Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетическая теория основное уравнение

Рис. IX. 1. Схема для вывода основного уравнения кинетической теории газов. Рис. IX. 1. Схема для <a href="/info/1518821">вывода основного уравнения кинетической</a> теории газов.

    Основным уравнением кинетической теории газов является уравнение вида [c.99]

    Основное уравнение кинетической теории газов [c.113]

    При выводе основного уравнения кинетической теории мы сначала допускали, что различные молекулы газа могут обладать неодинаковой скоростью, но в дальнейшем упростили вывод, введя понятие о средней квадратичной скорости. Спрашивается, как же обстоит дело в действительности  [c.100]

    Рассматривая вопросы движения молекул и применяя к ним законы механики, удалось получить важные соотношения и вывести основное уравнение кинетической теории газов [c.36]

    Соотношение (3) и является основным уравнением моле-кулярно-кинетической теории. Основным его именуют потому, что из него математически можно вывести и обосновать все законы идеальных газов. [c.25]

    Если обозначить объемы, занимаемые газом, через Ц, и V,. а соответствующие давления через Pq и Р/, то, в соответствии с основным уравнением кинетической теории газов (уравнение 10) можно написать  [c.44]

    При диффузионной зарядке, в отличие от ионной, нет предельного заряда, который зависит в основном от тепловой энергии ионов, размера частиц и времени. Исходя из этого, на основе принципов кинетической теории получено уравнение, связывающее заряд частицы с числом электронных зарядов  [c.106]

    Основной материал первых шести глав перестроен и преподносится в более логической и легче усвояемой последовательности. Хотя эти главы формально не отделены от остальной части книги, в действительности они составляют единый учебный цикл, где вводятся качественные представления химии об атомах и молях, стехиометрии, теплоте реакций, газовых законах и молекулярно-кинетической теории, химическом равновесии и кислотно-основном равновесии. Эти главы были вновь продуманы и переписаны одним из авторов как единое целое, с включением большего числа примеров и упражнений, которые даются в конце каждой главы. Представление о моле, правила составления химических уравнений и общие представления о стехиометрии теперь вводятся в первых двух главах, что позволяет студентам своевременно подготовиться к проведению лабораторных работ. В то же время стехиометрия, которая может показаться одним из скучнейших разделов химии, а также понятие о теплоте реакций представлены как иллюстрации к одному из важнейших физических принципов-закону сохранения массы и энергии. Длинная, но важная глава [c.9]

    Это уравнение является основным уравнением кинетической теории газов. [c.98]


    Основное уравнение кинетической теории газов следующее  [c.299]

    Основное уравнение кинетической теории газов pv = Nmu (см. раздел Газы ), [c.504]

    С развитием математического моделирования процессов и реакторов и исследованием с помощью математических методов динамических процессов нестационарной кинетики математика сделалась органическим вплетением в логические основания и химии, и химической технологии. И если в настоящее время учение о химических процессах называют и химической физикой (школа И, Н. Семенова), и физической кинетикой, то цементирующим элементом в системе, которая включала в себя химические и физические представления о химико-технологическом процессе, является скорее всего именно математика. И что особенно интересно и важно — это то, что в этой системе происходит развитие одновременно и параллельно и химических, и физических, и технических, и математических знаний. Дело в том, что решение кинетических задач оказалось невозможным в рамках классической теории дифференциальных уравнений. Сложный нелинейный характер протекания химических процессов выдвинул ряд новых задач, решение которых обогатило собственно и математику. В последние несколько лет создалась новая дисциплина, пограничная между математикой и химией, а фактически между математикой и теорией химической технологии, которая призвана решать задачи химии в основном в связи с созданием промышленного химического процесса, — математическая химия, призванная служить надежным теоретическим основанием учения о химических процессах. [c.163]

    Интересное историческое приложение из теоремы вириала в данной форме было сделано Максвеллом [1]. Максвелл показал, что давление газа обусловлено прежде всего кинетической энергией молекул, а не силами отталкивания между ними, как это предположил Ньютон. Важность вывода Максвелла на ранних этапах развития кинетической теории трудно переоценить. В самом деле, если давление создается в основном за счет отталкивания молекул, т. е. последним членом в уравнении [c.27]

    Основное уравнение кинетической теории газов Ц3 2. Понятие о статистической термодинамике Ц6 [c.5]

    Рио. 1.1. К выводу основного уравнения кинетической теории идеального газа. [c.10]

    Полученное выражение указывает на связь микро- и макроскопических свойств идеального газа и называется основным уравнением кинетической теории идеального газа. [c.11]

    Чем больше скорость испарения, тем больше и охлаждение поверхности жидкости и тем значительнее разница в температурах поверхностного слоя жидкости и остальной ее массы. Скорость процесса перехода вещества из л<идкости в пар и парциальное давление паров Ps в слое, прилегающем к поверхности жидкости, будут соответствовать температуре ее поверхностного слоя, а не температуре основной массы жидкости. Температуру поверхности жидкости практически измерить трудно. Обычно ее не измеряют и считают равной температуре основной массы жидкости однако это допустимо только тогда, когда скорость испарения невелика. Если скорость испарения значительна, то охлаждением поверхности нельзя пренебрегать, так как ошибка измерений достигает 20% и более. Исходя из молекулярно-кинетической теории, Максвелл вывел уравнение для коэффициента диффузии [c.404]

    Преобразованный вид основного уравнения кинетической теории [c.11]

    Графически закон Бойля—Мариотта изображается в координатах Р—V в виде симметричной гиперболы (рис. 1.2, а). Расстояние последней от начала координат до вершины зависит от природы газа, его массы и температуры, что следует из основного уравнения кинетической теории. [c.13]

    Зависимость (1.7) была установлена опытным путем в 1802 г. французом Ж. Гей-Люссаком (1778—1850) и называется уравнением закона Гей-Люссака. Графически этот закон изображается прямыми, исходящими из начала координат V—Т-диа-граммы, называемыми изобарами (рис. 1.2, б). Коэффициент пропорциональности в уравнении закона Гей-Люссака зависит от природы газа, его массы и давления, что следует из основного уравнения кинетической теории. При постоянной массе газа изобара I описывает [c.13]

    Теория коллоидных растворов со всеми ее выводами и уравнениями, в основе которых лежит молекулярно-кинетическая теория, получила полное экспериментальное подтверждение не только в интегральной форме. При исследовании коллоидных растворов можно было непосредственно видеть отдельную частичку, подсчитать количество частиц, определить скорость их движения, величину и частоту флуктуаций. Таким образом, была доказана достоверность основных предпосылок и выводов молекулярно-кинетической теории на отдельных частицах. Примечательно, что М. Смолуховский, оценивая экспериментальные исследования Ж. Перрена, Т. Сведберга и др., подтвердившие его теоретические формулы и формулы А. Эйнштейна, писал, что они представляют собою действительно классический опытный материал для доказательства кинетической атомистики Результаты этих экспериментов вынудили последователей школы В. Оствальда признать реальность существования атомов и молекул. [c.401]


    Для понимания основных уравнений кинетической теории газов мысленно выделим кубик гава со стороной а. Пусть скорость молекулы этого газа равна v, а ее масса т. При расстоянии между противоположными стенками воображаемого кубика, равном а и пути, проходимого молекулой в 1 сек. рав- [c.41]

    Это и есть основное уравнение кинетической теории газов. Как следует из изложенных выше представлений, оно относится к идеализированной модели газа, молекулы которого не взаимодействуют между собой, т. е. к так называемым идеальным газам. В действительности почти все газы при небольших давлениях и обычных температурах подчиняются этому уравнению. Для реальных газов оно тем точнее, чем выше температура и чем меньше давление, поскольку при этом уменьшается возможность взаимодействия между молекулами  [c.115]

    Основное уравнение молекулярно-кинетической теории идеальных газов [c.23]

    Из основного уравнения кинетической теории газов (10) можно записать  [c.45]

    Согласно закону Гей-Люссака (19) и основному уравнению кинетической теории газов (10), в случае постоянного объема можно записать  [c.46]

    Закон Бойля — Мариотта вытекает из основного уравнения молекулярно-кинетической теории [c.28]

    Сформулируйте положения и напишите основное уравнение молекулярно-кинетической теории газов. [c.69]

    Впервые Дебай (1914 г.) показал, что тепловое сопротивление в твердом теле обусловлено энгармонизмом колебаний атомов. В обш,ем случае в кристаллической решетке ангармонизм учитывается членами третьей степени в смещениях атомов в разложении потенциальной энергии V (I). Последовательная теория теплопроводности кристаллов, основанная на кинетическом уравнении для фононов, была развита Пайерлсом (1929 г.). Однако решение основных уравнений настолько затруднительно, что только при очень грубых приближениях появляется надежда на успех. [c.152]

    Таким образом, уравнение идеального газа выведено из газовых законов. Для создателей кинетической теории убедительным оказалось то обстоятельство, что с ее помощью могут быть получены те же самые уравнения, поскольку эта теория позволила дать не только качественное объяснение таких явлений в газах, как давление и диффузия, но и количественное описание поведения газов. Вывод экспериментальных законов кинетической теории — лучшее подтверждение ее основных допущений. [c.161]

    Несмотря на то, что основные принципы кинетической теории жидкости можно считать установленными, определение количественных соотношений для жидкостей находится в зачаточном состоянии. Отсутствует уравнение состояния жидких тел, отсутствует теория плавления, нет теории теплоемкости жидкости. [c.285]

    В 2 приводятся необходимые определения и основные математические соотношения, используемые в последующих параграфах. В 3 — 5 выводятся уравнения сохранения массы, количества движения и энергии. В 6 устанавливается эквивалентность полученных уравнений и уравнений, следующих из кинетической теории неоднородных газовых смесей. [c.522]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]

    Таким образом, в высокоэластическом состоянии механические потери в самом полимере дают весьма малый вклад в силу трения которая в основном определяется рассеянием энергии в поверхностном молекулярном слое при многократных деформациях поверхностных полимерных цепей в процессе непрерывного разрушения и восстановления ван-дер-ваальсовых связей между полимерными цепями и твердой поверхностью металла, т. е. адгезионной составляющей силы трения, определяемой из молекулярно-кинетической теории трения по уравнению вида [c.377]

    Изучение физико-химического процесса на любой установке (лабораторной, опытной, промышленной) представляет собой физическое моделирование, которое было основным методом исследования в течение длительного периода. Однако развитие науки показало, что не все процессы можно изучать на физических моделях. Например, крайне сложно осуществить физическое моделирование закона тяготения Ньютона Больцман долгие годы отстаивал свою молекулярно-кинетическую теорию, которая не признавалась крупнейшими авторитетами его времени на том основанпи, что поведение молекул не наглядно, их трудно физически моделировать. Выход был найден в аналогии (преимущественно математической) разных по физической сущности явлений природы . Например, законы Ньютона (притяжение тел) и Кулона (притяжение электростатических зарядов) описываются одинаковыми уравнениями. Используя аналогию физических явлений, создают модель, в которой осуществляют новый процесс, описываемый уравнениями такой же структуры, что и исходный. [c.12]

    Существенный вклад в теорию применения ЛССЭ к гетерогенному катализу вносит учет функции распределения каталитических центров по коррелирующему параметру, например по функции кислотности Гаммета. В этом случае, в соответствии о основным уравнением Рогинского для неоднородных поверхностей, скорость реакции для кислых катализаторов, если предположить, что активность катализатора зависит только от силы кислоты и вид кинетической зависимости одинаков для всех центров, выразится уравнением [c.161]

    Скорость элементарной реакции равна произведению концентраций реагентов, участвующих в химическом акп1е, возведенных в степени, равные стехиометрическим коэффициентам реакции. Уравнение (195.1) является основным законом кинетики. Коэффициенты v могут принимать только целые положительные значения, равные 1, 2, 3. Закон действующих масс был впервые сформулирован Гульдбергом и Вааге (1867). Пфаундлер уравнение (195.1) теоретически вывел на базе молекулярно-кинетической теории (1867). Часто односторонние реакции могут протекать через стадии образования промежуточных соединений реагирующих молекул с молекулами растворителя или катализатора, с последующим превращением в продукты реакции. Тогда уравнение скорости химической реакции записывают в форме [c.533]

    Внешние (Р, V, Г и т. п.) и внутренние N, ты, й, Ек) физические свойства идеального газа взаимосвязаны основным уравнением кинетической теории arpe ratHoro состояния  [c.14]

    Эта задача решается статистической термодинамикои, которая рассматривает тела как совокупность движущихся молекул. Простейшим пpимef ом применения статистической термодинамики является приведенный в предыдущем параграфе вывод основного уравнения кинетической теории газов. [c.117]

    Определение функции распределения по кинетическому уравнению— основная задача как в статистической механике, так и в кинетической теории. В линейной области, соответствующей малым отклонениям от локального равновесия, можно с успехом использовать вариационный метод [131]. Заметим, что при рассмотрении несамосопряженных задач вдали от локального равновесия (область нелинейности, система во внешнем поле и т. п.) уже невозможно вывести кинетические уравнения из лагранжиана. В этом разделе будет показано, что понятие локального потенциала, введенное ранее в макроскопической физике, можно использовать для определения функции распределения, по крайней мере методом последовательных приближений [124—126, 153]. [c.146]

    Щмдпожите фактические рекомендации дпя успешного разделения двух веществ исходя из теории теоретических тарелок, кинетической теории и основного уравнения qк>мaтогpaфии Ук = оу.. [c.340]

    В релаксационной теории стеклования Волькенштейн и Птицын [120] дали математическое обоснование идеям Кобеко и основному уравнению стеклования (VIII. 12). Они исходили из двухуровневой модели жидкости (полимера), состоящей из одинаковых кинетических единиц (сегментов). Последние могут находиться в двух энергетических состояниях (на двух уровнях) 1 и 2 (основном и возбужденном) и характеризуются одним временем релаксации т . Концентрация кинетических единиц в состоянии I будет щ, а в состоянии 2 — 2, где i -f 2 = 1. Скорость изменения концентрации п при переходе частиц из состояния 1 в состояние 2 определяется кинетическим уравнением  [c.191]


Смотреть страницы где упоминается термин Кинетическая теория основное уравнение: [c.576]    [c.21]    [c.174]    [c.576]   
Физическая и коллоидная химия Учебное пособие для вузов (1976) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетическая основность

Уравнение кинетическое



© 2024 chem21.info Реклама на сайте