Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавление теория

    Соли рассматривают обычно как продукты замены атома водорода,в кислотах на атомы металлов или гидроксильных групп в основаниях на кислотные остатки. С точки зрения теории электролитической диссоциации солями называются сложные вещества, которые при растворении в воде (или при плавлении) дают в растворе катионы металлов и анионы кислот. [c.245]

    Молекулярно-кинетическая теория плавления [170] исходит из положения, что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличивающейся тепловой подвижностью частиц с ростом температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной близости от пл кристаллографически правильное расположение частиц теряет устойчивость, причем решающая роль в разрушении дальнего по- [c.158]


    Таким образом, критические параметры в сложных высокомолекулярных системах существенно отличаются от параметров построенных для решеток Изинга исходя из теории классов универсальности Вильсона-Фишера. Данные результаты означают, что концентрационный хаос существенно искажает критические показатели классов универсальности. Кроме того, исследован предсказанный в части 4.1 эффект пространственно-временной совместимости ФП. Так установлена корреляция между параметрами порядка фазового перехода 1 рода (плавления) и кинетического фазового перехода 2 рода (размягчения) (рис. 4.4). [c.36]

    Рассмотрение Френкелем [26] кинетической теории жидкостей на принципиально новой основе сближения их с твердыми телами позволило внести существенный вклад в описание поведения аномальных жидкостей, свойств жидкостей и механизм плавления. [c.87]

    Для выявления термодинамических особенностей растворов воспользуемся сольватной теорией и аддитивностью функций состояния системы. На основании этого процесс растворения можно представить состоящим из двух последовательных стадий распределения растворяемого вещества по объему растворителя и образования сольватов. Первая стадия тождественна фазовому переходу плавлению — при растворении кристаллических тел. конденсации — при растворении газов вторая — химическому процессу. [c.202]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации Т1 и Т2. Из данных рис. 8.8 следует наличие расхождений с результатами теории (пунктирная кривая), основанной на предположении о виде функции корреляции (8.10). При повышении температуры не обнаруживается тенденции к сближению Т1 и тз, которое, согласно теории, должно наступать сразу после проявления минимума Ть Еще более существенно наличие при высоких температурах двух поперечных времен релаксации и одного продольного. [c.225]

    Разные области термодинамики химических реакций развивались неодновременно" . Изучение тепловых эффектов различных процессов и теплоемкостей разных веществ началось еще с первой половины прощлого века в результате разработки калориметрических методов. Хорошо известный закон Гесса, основанный на экспериментальных данных, был опубликован в 1840 г. В течение всего последующего времени параллельно с дальнейшим развитием теории и техники эксперимента происходило интенсивное накопление опытных данных о тепловых эффектах различных реакций, теплоемкостях, теплотах плавления, теплотах испарения разных веществ и других величин. В течение XIX века в работах Гесса, Томсена, Бертло, Лугинина, Зубова и других был накоплен обширный фонд данных для этих величин, в частности по теплотам испарения и сгорания органических соединений. Это дало возможность выявить ряд закономерностей в их значениях (правило Трутона, аддитивность теплот сгорания органических соединений некоторых классов). Последующее повышение точности показало, впрочем, довольно приближенный характер таких закономерностей. [c.17]


    Теплоемкость жидкостей. Теплоемкость жидкостей — сложная функция температуры, которую нельзя вывести теоретически, что связано с отсутствием совершенной теории жидкого состояния. Отметим только, что вблизи температуры плавления теплоемкости простых твердых тел и жидкостей весьма близки. Смысл этого факта становится понятным, если принять во внимание, что теплоемкость тела связана с характером теплового движения. Следовательно, малое изменение теплоемкости тела при плавлении, по мнению Я. И. Френкеля, можно рассматривать как свидетельство того, что характер теплового движения в жидкостях такой же, как и в твердых телах. Однако теплоемкости жидкостей при высоких температурах существенно отличаются от таковых значений в точке. плавления. [c.68]

    Достаточно строгой теории, исчерпывающе разъясняющей причину различного поведения молекул с уменьшением расстояния между ними, пока еще нет. Практическое значение ММВ велико. Они сильно влияют на упругость газов при их сжатии, физико-химические характеристики вещества температуру кипения, плавления и др. Необходимо учитывать межмолекулярные взаимодействия на первых этапах химической реакции. Поэтому важно знать природу сил межмолекулярного взаимодействия. [c.152]

    Плавление кинетическая теория описывает следующим образом. В кристаллической решетке твердого тела всегда существуют в небольшом количестве вакансии (дырки), медленно блуждающие по кристаллу. Чем ближе температура к температуре плавления, тем выше концентрация дырок , тем быстрее они перемещаются по образцу. В точке плавления процесс образования дырок приобретает лавинообразный кооперативный характер, система частиц становится динамичной, исчезает дальний порядок, появляется текучесть. Решающую роль в плавлении играет образование свободного объема в жидкости, который и делает систему текучей. Важнейшее отличие жидкости от твердого кристаллического тела заключается в том, что в жидкости существует свободный объем, значительная часть которого имеет вид флуктуаций ( дырок ), блуждание которых по жидкости и придает ей такое характерное для нее качество, как текучесть. Число таких ды- [c.116]

    Плавление. Плавление вещества относится к фазовому переходу первого рода, который сопровождается изменением внутренней энергии, объема, энтропии и энтальпии [3]. Это вытекает из теории термодинамики, согласно которой в условиях, равновесия системы сосуществуют две фазы, и мольные свободные энергии Гиббса вещества в обеих фазах равны (61 = (12). Тогда разность ДО фазового перехода будет равна нулю, а ее первые производные по температуре (Г) и давле-ипю (Р) испытывают скачок [c.105]

    Плавление льда и замерзание воды. При атмосферном давлении обычный лед плавится при 0 С. Соотношения, связанные с правилом фаз, были описаны для этого процесса в 14 гл. IV, ч. I. С точки зрения молекулярно-кинетической теории плавление льда происходит при той температуре, при которой тепловое движение частиц, усиливающееся с повышением температуры, становится способным разорвать часть водородных связей между молекулами. В результате структура льда разрушается и вода переходит в жидкое состояние. [c.10]

    Плавление твердых тел сопровождается их переходом в жидкое агрегатное состояние. В этом состоянии кинетическая энергия молекул (атомов или ионов) несколько превышает аналогичные параметры для твердого тела. Поэтому и характер движения частиц в жидкостях имеет своеобразные особенности. В среднем по времени ближайшие друг к другу частицы в жидкостях располагаются не хаотически, а более или менее упорядоченно, реализуя так называемый ближний порядок . Согласно теории советского ученого Я- И. Френкеля, частицы, находясь в этом положении, совершают тепловое колебательное движение и лишь изредка осуществляют поступательный скачок за пределы своей группировки. Совершение частицей такого активированного скачка требует преодоления некоторого потенциального барьера. [c.70]

    Кроме хорошей электропроводности оказалось, что растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в том же растворителе и наоборот, растворы электролитов обладают более высокими температурами кипения и низкими замерзания по сравнению с чистым растворителем. Для объяснения и согласования этих различных особенностей электролитов были в разное время выдвинуты различные теории, но первой теорией, которая смогла качественно объяснить важнейшие свойства электролита, была теория, сформулированная в 1887 г. выдающимся шведским ученым С. Аррениусом. Впоследствии его теория получила широкое распространение и признание и в литературе чаще всего встречается под названием теории электро-литической диссоциации. [c.160]

    Сравнение этого выражения с (III.7) позволяет выразить криоскопическую постоянную растворителя К через теплоту плавления растворителя. Поскольку величины К и Япл можно определить на опыте, это дает способ проверить саму теорию и судить об идеальности или неидеальности раствора. С другой стороны, тому же уравнению при любом Х2 можно придать вид [c.91]


    Вещества находятся в кристаллическом состоянии при температурах от О К до некоторого значения зависящего от давления (однако, чтобы заметно изменить Тцл, нужны весьма высокие давления). Температура плавления для различных веществ меняется в широких пределах в зависимости от характера взаимодействий в системе. Единственное вещество, которое при атмосферном давлении остается жидким вплоть до абсолютного нуля, — гелий, особые свойства которого находят объяснение в свете квантовой статистической теории. Кристаллизация гелия происходит только при высоком давлении (при р = 2,5 МПа Г р ет = 1,5 К). [c.310]

    Теория Штаудингера имела много недостатков. Отрицая способность макромолекул к ассоциации, невозможно было объяснить особенности процессов растворения, а также свойства полимеров в твердом состоянии и в растворах. Представление о макромолекулах как о жестких палочках также оказалось несостоятельным. В настоящее время гибкость макромолекул и их способность значительно изменять свою форму доказаны экспериментально. На основании этого стало возможным установить механизм деформации полимеров и влияние гибкости цепи на процессы растворения, плавления и т. д. [c.51]

    В последнее время для объяснения особенностей плавления полимеров все большее распространение находит теория поверхностного плавления, предложенная Цах-маном - Согласно этой теории происходит постепенный переход участков молекул с поверхности кристалла в расплав, что и приводит к существованию интервала плавления Теория основывается на представлениях о равновесной длине участка цепи, находящегося в дефектном поверхностном слое кристалла. Эта равновесная длина должна расти с температурой, т. е. повышение температуры должно приводить к росту величины Ы1 (см. рис. 5, в). Измерение интенсивности рассеяния рентгеновских лучей под малыми углами подтверждает этот теоретический вывод. Однако при рассмотрении экспериментальных данных, относящихся к системам, закристал- [c.37]

    Молекулярно-кинетическая теория плавления исходит из положения. что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличива-юп1,ейся тепловой подвижностью частиц с повышением температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной б.тизости от кристалло-графпческп правильное расположение частиц теряет устойчивость, причем решающая роль в разрушенип да.льного порядка переходит к появляющимся более или менее значительным флуктуациям плотности, в которых участвует значительное число атомов. [c.8]

    Твердые углеводороды масляных фракций ограниченно растворяются в неполярных растворителях. Растворимость их подчиняется общим законам теории растворимости твердых веществ в жидкостях. Согласно этой теории, растворимость твердых углеводородов в неполярных растворителях, в том числе в жидких компонентах масляных фракций, уменьшается с повышением их концентрации и молекулярной массы, а также температуры кипения фракции. Растворимость твердых углеводородов увеличивается при повышении температуры, и при температуре плавления парафины и церезины, так же как и жидкие углеводороды, неограниченно растворяются в неполярных растворителях. Растворимость твердых углеводородов в масляных фракциях и неполярных растворителях, имеющая большое значение при выборе условий процессов депарафинизации рафинатов и обезмасливаиия гачей и петролатумов, может быть рассчитана по уравнению [2]  [c.46]

    По мнению большинства авторов, размягчение углей происходит в результате крекинга с образованием молекул с молекулярной массбй от 300 до 600, которые достаточно велики, чтобы не улетучиваться мгновенно, но все же малы и поэтому образуют при температуре около 400° С истинные растворы, способные, в частности, растворять и пластифицировать молекулы или мицеллы , которые надежно сохраняют свою массу. Эта теория хорошо учитывает влияние различных экспериментальных факторов на плавление и объясняет два явления, которые долгое время интересовали исследователей  [c.92]

    Для развития теории кинетики возникновения новой фазы большую роль сыграли экспериментальные и теоретические работы Там-мана, Френкеля, Данилова и др. Рассмотрим некоторые полуколи-чественные соотношения для кинетики кристаллизации жидкости. Скорость V образования кристаллического зародыша из переохлажденной (ниже температуры плавления) жидкости пропорциональна вероятности образования зародыша  [c.378]

    Бензолсульфокислота. Рядом авторов [227] одновременно найдено, что при нагревании калиевой соли бензолсульфокислоты с едким кали до высокой температуры образуется фенол и сернистокислый калий. Аналогично идет реакция с едким натром, который ввиду сравнительной дешевизны, всегда применяется при промышленном получении фенола [228]. Влияние условий реакции на выход фенола исследовано весьма тщательно. Очень хорошие результаты получаются при 15%-ном избытке едкого нат11а, если после внесения всей соли сульфокислоты плавление производить при 350° в течение 15 мин. Выход фенола в этом случав достигает 96% от теории. При 300° можно получить почти такой же выход, беря 50%-ный избыток щелочи и ведя плавление в течение 30 мин. [229]. [c.229]

Рис. 3.6. Влияние температуры м продолжительности отжига (а), а также длины ламелей (б) на температуру плавления ПЭВП (а — эксперимент, б — теория). Числа у кривых — продолжительность отжига А — неотожженный образец. Рис. 3.6. <a href="/info/15368">Влияние температуры</a> м продолжительности отжига (а), а <a href="/info/873191">также длины</a> ламелей (б) на <a href="/info/6380">температуру плавления</a> ПЭВП (а — эксперимент, б — теория). Числа у кривых — продолжительность отжига А — неотожженный образец.
    Параллельная укладка цепей уменьшает величину А5, присущую аморфному каучуку, до значений, характерных для кристаллизующихся полимеров, поскольку конформационная энтропия ориентированных цепей"имеет меньшее значение. С другой стороны, ориентация не оказывает никакого влияния наХэнтальпию аморфного каучука. Поэтому [величина АЯ в уравнении (3.6-2) остается неизменной и определяется из теории Гвысокоэластичности каучука. Таким образом, уравнение (3.6-2) показывает, что при деформации каучука должно наблюдаться заметное повышение температуры плавления, увеличивающее степень переохлаждения, которая является главным фактором, управляющим скоростью процессов кристаллизации. [c.60]

    Теория вакансионной модели жидкости развита главным образом Я. И. Френкелем и Г. Эйрингом. В этой грубой полукаче-ственной схеме игнорируется исчезновение дальнего порядка при плавлении, и жидкость рассматривается как решетка с большим количеством вакансий. [c.286]

    X — суммарное количество тепловой энергии, необходимое для нагрева твердой фазы от начальной температуры Т о до температуры Т 1 и плавления при этой температуре. Сандстром и Юнг [32] решили эту систему уравнений численным методом, заменив уравнения в частных производных уравнениями в обыкновенных производных на основе методов теории подобия. Пирсон [34] использовал аналогичный подход и получил ряд аналитических решений для более простых спучаев. Он использовал безразмерные переменные, которые полезны, как это будет далее показано, при физической интерпретации результатов  [c.285]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации ti и та. Данные рис. VIII. 6 свидетельствуют о наличии расхождений с результатами теории, основанной на предположении об экспоненциальном виде функции корреляции. При повышении температуры не обнаруживается тенденция к сближе  [c.274]

    Энергия решетки конного кристалла определяет целый ряд его физических свойств. Работы Борна и Капустинского создали количественную теорию решетки ионных кристаллов. Стабильность кристалла тем выше, чем выше энергия решетки. Из формул Борна и Капустинского следует, что наиболее стабильны решетки, образованные небольшими и сильно заряженными ионамн. Этот вывод подтверждается сравнением свойств, зависящих от энергии решетки для ряда ионных кристаллов (твердость, температура плавления [c.170]

    Участки резкого изменения проводимости твердых электролитов с переходом их в состояние ионных сверхпроводников (см. рис. 32) можно рассматривать как следствие плавления катионной подрешетки. Часто, но не всегда плавление катионной подрешетки сопровождается фазовым переходом. Например, для Agi на участке резкого изменения V. наблюдается переход от вюрцитной структуры P-AgI к плотноупако-ванной объемно-центрированной кубической решетке а-Agi. Ионный сверхпроводник можно представить в виде ажурного жесткого анионного остова, пропитанного катионной жидкостью . Иногда жесткий остов оказывает меньшее сопротивление движению катионной жидкости, чем анионы в расплаве электролита. Поэтому при плавлении твердого электролита возможно даже уменьшение проводимости. Количественная теория проводимости ионных сверхпроводников находится в стадии разработки. Этот класс электролитов привлекает в настоящее время особое внимание в связи с возможностями его широкого практического применения. [c.99]

    Теория Френкеля — Шоттки, позволяет получить количественные соотношения между проводимостью и концентрацией дефектов. Поэтому, измерив проводимость твердого электролита, можно по соответствующим уравнениям вычислить число дефектов. Было найдено, например, что в Na l при температуре, близкой к температуре плавления, концентрация вакансий равна (1 вакансия на каждые 10 000 катионов). Малая концентрация вакансий служит одной из причин того, что нормальные ионные кристаллы (типа Na l, Ag l и др.) даже при высоких температурах и в присутствии небольшого количества примесных ионов обладают проводимостью, не превышающей 0,1 См/м. Поскольку вакансии и межузельные ионы заряжены, можно ожидать, что они будут взаимодействовать между собой так же, как ионы в растворах электролитов. Френкель впервые указал, что это взаимодействие можно описать теорией Дебая — Гюккеля. Взаимодействие дефектов ведет к снижению энтальпии их образования и сказывается на величине проводимости ионных кристаллов. [c.107]

    Резкий скачок в промышленном производстве А1 произошел в 80-х годах прошлого столетия, когда было технически освоено получение алюминия электролизом расплавленного раствора глинозема в криолите. Теория электрометаллургии была создана П. П. Фе-дотьевым. Отечественные ученые разработали метод получения глинозема нз нефелина. Глинозем — тугоплавкий материал, температура плавления чистого А1 0з 2072 °С, и для ее понижения добавляют преимущественно криолит Мал[А1Рг,1. При этом температура плавления понижается до 960 °С. Получение А ведут в специальных электрических печах. Продажный металл содержит примерно 99% А1. Главными примесями являются железо, кремний, титан, натрий, углерод, фториды и др. Для получения алюминия высокой степени чистоты его подвергают электролитическому рафинированию. Используют также процесс нагревания А1 в парах А1Рз (транспортную реакцию)  [c.271]

    В. И. Данилов и И. В. Радченко впервые в СССР исследовали рассеяние рентгеновского излучения жидким свинцом, оловом, висмутом и их сплавами. Тонкий анализ кривых интенсивности, тщательное проведение экспериментов позволили им убедительно показать, что при плавлении металлов и сплавов расположение атомов относительно друг друга не становится произвольным, а сохраняет взаимную координацию, характерную для твердого состояния. В. И. Данилов, Н.В.Мо-хов и Я. М. Лабковский применили метод рассеяния под малыми углами для исследования флуктуации плотности в жидкостях. Теория метода малоуглового рассеяния рентгеновских лучей разрабатывалась А. Гинье, О. Кратки, Р. Хозе-маном, Н. В. Филипповичем и др. [c.5]

    Интерес к изучению структуры ионных жидкостей вызван тем, что, во-первых, расплавы солей широко применяют при электролитическом получении редких металлов, используют в ядерной технике в качестве теплоносителей во-вторых, знание структуры позволяет вычислить равновесные свойства солевых расплавов статистическими методами, что важно для развития общей теории жидкого состояния. Исследование структуры расплавленных солей впервые было проведено В. И. Даниловым, и С. Я. Красницким. Они изучали расплавы ЫаНОз и КНОз вблизи их точек плавления. В твердом состоянии эти соли имеют ромбоэдрическую решетку, в узлах которой находятся ионы Ыа+или К% а на середине расстояния между их центрами — ионы ЫОз. Анализ полученных данных показал, что структурными единицами расплавов этих солей являются не молекулы, а ионы Ыа% и N03. В расплаве почти те же числа ближайших соседей и расстояния между ними, что и в твердом состоянии. [c.266]

    Большую роль в дальнейшем развитии теории физико-химического анализа сыграли работы Н. С. Курнакова и его учеников по изучению металлических, солевых и жидких систем. Измеряя физические свойства (электропроводность, тврмоэлектродвижу-щую силу, коэффициент расширения, температуру плавления и Др.) и нанося их величины как функции состава на диаграмму, И. С. Курнаков получил диаграммы состав — свойство, вид ко- [c.265]

    Кроме этих кислот, существует оптически недеятельная молочная кислота с другой температурой плавления. Все они по составу являются а-оксипропионовой кислотой СНз—СНОН — — СООН. И. Вислиценус установил существование большего числа изомеров, чем это допускалось теорией химического строения. Подобные факты, — писал И. Вислиценус, — заставляют объяснить ра.зличие изомерных молекул одинаковой структурной [c.215]


Смотреть страницы где упоминается термин Плавление теория: [c.61]    [c.228]    [c.196]    [c.34]    [c.196]    [c.108]    [c.230]    [c.48]    [c.60]   
Кристаллизация полимеров (1966) -- [ c.155 ]




ПОИСК







© 2025 chem21.info Реклама на сайте