Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные электронное строение

    Широкие и интенсивные полосы получаются при переходе электрона с внутреннего незавершенного 4/-подуровня на внешние уровни. На этих уровнях электрон находится под сильным и нерегулярным воздействием электронных полей молекул растворителя, что ведет к образованию широкой полосы поглощения. При возникновении узких полос 4/-электрон не покидает своего подуровня, меняется лишь его взаимодействие с другими электронами. Хорошая защищенность 4/-электронов от внешних воздействий приводит к тому, что спектры поглощения растворов солей редкоземельных элементов в некоторой мере сохраняют дискретную структуру, похожую на структуру спектров этих атомов в газообразном состоянии. Различия в строении 4/-подуровней у отдельных редкоземельных элементов обусловливает индивидуальный характер их спектров поглощения. [c.9]


    Гафний. Гафний непосредственно, следует за редкоземельными металлами. До появления теории строения атомов элемент с порядковым. номером 72 искали в редкоземельных минералах. Но из теории строения атомов следовало, что достройка третьего (снаружи) электронного слоя у редкоземельных металлов заканчивается у элементов с порядковым номером 71, и элемент с порядковым номером 72 должен по строению атома быть сходным уже не с редкоземельными металлами, а с ти-таном и цирконием. После этого гафний незамедлительно и был открыт при помощи рентгеноспектрального анализа в циркониевых рудах. [c.481]

    Элементы побочной подгруппы III группы периодической системы № 58—71 называются лантаноидами (общий символ Ln). Наряду с этим употребляют название — редкоземельные элементы (РЗЭ). Сюда же иногда присоединяют скандий и иттрий, хотя они имеют другое электронное строение. Скандий описан в I гл. Иттрий рассмотрим вместе с лантаноидами. Электронные конфигурации нейтральных атомов показаны в табл. 13 [1]. [c.46]

    С позиций современной химии этот факт легко объясним электронное строение атомов редкоземельных элементов — а к ним относятся скандий, иттрий, лантан и 14 лантаноидов — очень сходно. Химические свойства их, в том числе свойства, определяющие поведение элемента в земной коре, трудноразличимы. Очень близки размеры их ионов. В частности, у иттрия и тяжелых элементов семейства лантаноидов — гадолиния, тербия, диспрозия, гольмия, эрбия, тулия — размеры трехвалентного иона практически одинаковы, разница в сотые доли ангстрема. [c.183]

    После изучения ряда классических окисных систем, важных для цементной, огнеупорной и керамической технологии, по инициативе Н. А. Торопова все усилия были сосредоточены на исследовании систем, включающих окислы редкоземельных и редких элементов, что было связано с широкими перспективами применения соответствующих материалов в различных отраслях новой техники. Это также открывало возможность установления обобщений крупного научного значения в связи с особенностями электронного строения редкоземельных элементов, наличием глубокой аналогии в химических свойствах их соединений и возможностью изучения поведения элементов в различных валентных состояниях. С самого начала исследования в этой области были поставлены комплексно, с привлечением к решению проблемы многих лабораторий. [c.6]

    Электронное строение редкоземельных элементов в их солях [c.375]

    Согласно рекомендациям Международного союза по общей и прикладной химии [1] иттрий относится к группе редкоземельных элементов, с которыми его объединяет сходство электронного строения атома и некоторых физико-химических свойств. [c.5]


    Особое внимание уделялось изучению каталитического действия редкоземельных элементов. Так, было исследовано влияние окислов Nd, Gd, Y, Dy в реакции o-n-превращения (1) и дейтеро-водородного обмена На + Dg (2). Установлено, что скорость реакции (1) имеет максимум при 240—270° К для неодима, гадолиния и иттрия. Найдена корреляция между величиной ионных радиусов, количеством адсорбированного водорода и изостерическими теплотами адсорбции для всех рассмотренных катализаторов, в то время как константы скорости не коррелируют с этими величинами, но зато меняются симбатно с величиной магнитного момента. Из этого вытекает, что при низких температурах реакция (1) протекает по магнитному механизму, когда скорость ее зависит от структуры 4/-электронной оболочки. В работе [36] авторы сделали вывод о связи скорости каталитической конверсии при низких температурах и строения 4/-оболочки. Активными центрами реакций (1) и (2) являются катионы, расположенные на макродефектах или вблизи анионных вакансий. В области средних температур (140—400° С) реакция (1) также протекает по магнитному механизму скорость реакции (2) очень мала, на 3—5 порядков меньше скорости реакции (1). При температуре >400° К обе реакции протекают с соизмеримой скоростью по одному и тому же механизму, а именно — по химическому, когда каталитическая активность определяется 5s- и 5р-уровнями. Трехокись иттрия и лютеция, обработанные водородом при 550° С, оказались эффективными катализаторами в реакции ор/по-превращения водорода. Реакция протекает по маг- [c.49]

    Методом ионообменной хроматографии можно разделить на катионите близкие по свойствам редкоземельные элементы, используя различия констант нестойкости их комплексных соединений при разных значениях pH. В основе разделения их с помощью ионообменной хроматографии лежит различие в свойствах их комплексных соединений, поскольку именно в комплексных соединениях наиболее полно проявляются и находят отражение тонкие различия в величинах ионных радиусов и строении электронных оболочек. [c.208]

    Чем выше атомный вес элемента, тем реже он встречается в природе. Обращает на себя внимание также факт повышенной распространенности элементов с четными порядковыми номерами. Содержание их составляет в целом для Земли 97,21 вес.%, по числу атомов — 97,35%. Содержание нечетных элементов значительно меньше. Преобладание четных элементов над нечетными особенно резко проявляется в группе редкоземельных элементов. Эти элементы имеют чрезвычайно близкие химические свойства, что обусловлено одинаковым строением их наружных электронных оболочек. Все 14 элементов этой группы сопутствуют друг другу при различных геологических и геохимических процессах, и соотношение их содержания практически не изменяется. На рис. 28 показаны кривые распространенности элементов этой группы в земной коре и Метеоритах. Видно последовательное повышение распространенности четных элементов по сравнению с нечетными. [c.83]

    Во-вторых, именно в комплексных соединениях наиболее значительно проявляются тонкие различия в величинах ионных радиусов, строении электронных оболочек, величинах констант нестойкости и т. п. Поэтому перевод, например, ионов металлов в комплексные ионы позволяет значительно увеличить различие в константах ионного обмена и тем самым существенно улучшить разделение смесей близких по свойствам ионов. В. частности, таким путем были разделены смеси катионов редкоземельных элементов и получены наиболее чистые препараты их соединений с очень близкими свойст-, вами. [c.66]

    Обычно термин редкоземельные элементы применяют к семейству элементов с порядковыми номерами 57-—71. У этих элементов при возрастании порядкового номера атома происходит заполнение электронами не внешней 6 -оболочки, но более глубоко лежащих 4/- и отчасти 5с -электронных уровней [152]. Руководствуясь общепринятым в настоящее время расположением электронов, следует, однако, иметь в виду энергетическую близость уровней 4/ и Ы, в силу чего Хунд [153], например, для церия принимает не строение а 4/ 5 б52. [c.30]

    Редкоземельные (лантаниды) и трансурановые трехвалентные (актиниды) элементы обладают очень близкими между собою свойствами вследствие того, что в них происходит заполнение 4f и 5/ электронных оболочек, и строение наружных электронных оболочек, принимающих участие в химических связях, не изменяется от элемента к элементу. Размеры их ионов также оказываются близкими. Поэтому разделение их обычными химическими методами оказывается очень трудным и осуществляется хроматографическими методами с применением ионообменных смол. [c.402]

    К этому времени электронная модель атома, была разработана уже настолько, что на ее основе Нильс Бор смог объяснить периодичность строения атомов, объяснить особенности и порядок размещения элементов в периодической системе. На основании своих расчетов Бор заключил, что последним редкоземельным элементом должен быть элемент № 71 — лютеций, а элемент № 72, но его мнению, должен быть аналогом циркония. [c.120]


    Во-вторых, теория Бора объяснила удивительную близость свойств редкоземельных элементов. Во многих работах и в первую очередь в трудах Косселя, посвященных исследованию природы валентности, была установлена зависимость химических свойств элементов от строения внешней электронной оболочки их атомов. Если внешняя оболочка остается неизменной, а очередные электроны доба)вляются в предыдущую, то при переходе от элемента к элементу их свойства меняются не столь резко это можно видеть на примере вставных декад (скандий — цинк, иттрий — кадмий), где заполняется десятью -электронами именно предыдущая оболочка. У редкоземельных элементов неизменными остаются две наружные оболочки, а достраивается четырнадцатью 4/-электронами третья снаружи оболочка. Такой порядок заполнения проявляется в незначительном изменении свойств при переходе от одного редкоземельного элемента к другому. [c.85]

    Свойства простых соединений трехвалентных элементов этой группы настолько близки между собой, что не могут явиться основой для химических методов разделения в аналитических и препаративных целях. Чаще всего для этих целен пользуются различием свойств комплексных соединений редкоземельных металлов, поскольку именно в комплексных соединениях наиболее полно проявляются и находят свое отражение тонкие различия в величинах ионных радиусов и в строении электронных оболочек. Поэтому, как правило, анализ смесей редкоземельных металлов проводится физическими методами с использованием комплексообразователей. Одним из физико-химических методов, используемых для этих целей, является полярография. [c.287]

    Особый интерес представляют спектры поглощения растворов солей редкоземельных элементов и актиноидов. Они имеют почти одинаковое электронное строение внешних орбиталей. Поэтому данные элементы очень похожи друг на друга по своему химическому поведению и трудно разделимы. У редкоземельных элементов наименее прочно связанные электроны принадлежат достраивающемуся 4/-поду-ровню, который защищен от внешних воздействий завершенными подуровнями 5з, 5р, 6з. Оптические спектры редкоземельных элементов возникают в результате возбуждения именно этих наименее прочно связанных, но достаточно экранированных электронов. Эти спектры очень сложны и резко отличаются друг от друга. Они состоят из широких полос, расположенных в УФ-области спектра, и большого числа узких полос, отличающихся малой интенсивностью [1]. [c.9]

    В шестом периоде, кроме заполнения 5 -нодоболочки и появления десяти переходных металлов, происходит заполнение 4/-нодоболочки, в результате которого возникают 14 лантаноидов. Они, как и переходные металлы, не могут быть оторваны от всей системы элементов и непременно должны быть соединены линиями с металлами 5-го периода, имеющими с ними определенные черты сходства. При этом, в соответствии с двойной периодичностью строения и свойств, ряд лантаноидов должен быть разделен на две группы элементов, отвечающих заполнению первой и второй половины 4/-подоболочки. Такой прием, хотя и не нашел отражения в современных пирамидальных таблицах, точно соответствует таблицам, составленным Менделеевым (см. табл. 2). При этом европий—иттербий, лантан—гадолиний—лютеций и т. д. оказываются на ветвях, идущих слева направо и вниз, что приводит к разделению цериевых и иттриевых редкоземельных металлов и соответствует изменению параметров, отражающих различия их электронного строения. Расположение всех лантаноидов в один ряд является совершенно неудовлетворительным, так как элементы от европия до иттербия оказываются при этом несвя- [c.62]

    Сходство свойств редкоземельных элементов обусловливается прежде всего одинаковым строением их наружных электронных [c.335]

    Характерной чертой новых исследований, начиная с появления теории Бора, является кажущееся парадоксальным стремление вырваться из рамок одной клетки периодической системы. Химики никак не могли примириться с мыслью, что пятнадцать элементов должны занимать лишь одно место в таблице подобно Клемму и Нод-даку, большинство исследователей воспринимало теорию строения электронных оболочек как рабочую гипотезу. С другой стороны, модернизаторы таблицы Менделеева учитывали не только чисто химические свойства элементов. В этом отношении любопытна работа английского ученого Д. Спенсера, опубликованная в 1928 г. В основу своего исследования Спенсер положил три фактора 1) форму кривой магнитных свойств 2) растворимость сульфатов редкоземельных элементов в щелочных сульфатах и 3) аномальные валентности лантаноидов. Ученый считал, что па основании хода магнетизма редкоземельные элементы можно разделить на две группы от лантана до самария и от еврония до гадолиния, причем они идентичны тем двум группам, на которые разделяются редкие земли согласно растворимости их сульфатов в насыщенном растворе К2804 , т. е. лантан—самарий и европий — лютеций. Это совпадение можно использовать, по мнению Спенсера, для размещения редкоземельных элементов в таблице (табл. 16). [c.119]

    Группа редкоземельных металлов по числу входящих в нее элементов и по своеобразию их свойств занимает особое положение в неорганической химии. Специфические свойства группы редкоземельных металлов объясняются прежде всего своеобразным строением электронных оболочек их атомов. [c.287]

    В плане развития работ в этом направлении на кафедре были рассмотрены вопросы электронной природы твердости металлов, неметаллов и сплавов (Л. И. Баженова, А А. Иванько) и обобщены в монографическом справочнике электронного строения сложных карбидо-гидридных фаз (Л. Н. Баженова, канд. техн. наук В. В. Морозов) — эта работа привела к выводам о двойственном состоянии водорода в гидридах и карбидо-гидридах как в форме протонов, так и отрицательных гидрид-ионов, позволила объяснить причины более сильной связи водорода в карбидо-гидридах по сравнению с гидридами, представить схему химических связей в этих соединениях, а также существенно развить представление о структуре фаз внедрения вообще. Развитие представлений конфигурационной модели применительно к ферритам с использованием редкоземельных элементов было выполнено [c.78]

    Химия РЗЭ (см. Редкоземельные элементы) близка к химии нек-рых редких металлов и химии актиноидов, что связаио с определенными аналогиями в электронном строении и хим. св-вах всех этих элементов и определяет их совместное присутствие в нек-рых прир. источниках. Уникальные св-ва РЗЭ были изучены и реализованы лишь начиная с 60-70-х гг. Особенностью этих элементов является близость их хим. и многих физ. св-в, что привело к необходимости преодоления трудностей при выделении, глубокой очистке и определении индивидуальных элементов. Интерес к этой области Н.х. возрастает в связи с открытием высокотемпературных оксидных сверхпроводников. [c.211]

    В недавно опубликованной работе [37] исследовалась каталитическая активность редкоземельных металлов — иттрия, гадолиния, диспрозия и иттербия в виде напыленных пленок — в отношении реакции изотопного обмена в молекулярном водороде и орто-пара-превращепия водорода при низких температурах —125 и —196° С. Сделана попытка сопоставления каталитической активности редкоземельных элементов с электронным строением. Оказалось, что наибольшую каталитическую активность проявляют металлы, обладающие наименьшим магнитным моментом. [c.50]

    Одинаковое строение крайней электронной оболочки — причина близких химических свойств редкоземельных элементов и трудности их разделения. До последнего времени единственно доступным препаратом редкоземельных металлов был мишметалл — сплав около 50% церия с другими лантоноида-ми. За последнее время в области разделения редких земель наблюдаются существенные сдвиги, в результате чего такие элементы, как церий, самарий, европий и иттербий, выделены в виде соединений спектральной чистоты [154]. [c.30]

    Лит. Григорович В. К. Периодический закон Менделеева и электронное строение металлов. М., 1966 Корнилов И. И. [и др.]. Метаплохимические свойства элементов периодической системы. М., 1966 О р м о н т Б. Ф. Современное содержание стехиометрических законов. Фазы и соединения переменного состава. Нестехиометрические соединения. В кн. Соединения переменного состава. Л., 1969 Сивертсен Д. М., Николь-с о н М. Е. Структура и свойства твердых растворов. Пер. с англ. М., 1964 Шуберт К. Объяснение химической связи пространственной корреляцией электронов. В кн. Интерметаллические соединения. Пер. с англ. М., 1970 Гольдшмидт X. Дж, Сплавы внедрения, в, 1. Пер. с англ. М., 1971 Тейлор К., Дарби М. Физика редкоземельных соединений. Пер. с англ. М., 1974. [c.487]

    Работы начались с изучения диаграмм состояния бинарных систем окисел редкоземельного элемента—кремнезем, глинозем. С 1968 г. под руководством докт. хим. наук И. А. Бондарь ведутся исследования германатов, титанатов, цирконатов, ванадатов, ниобатов редкоземельных элементов. Получено большое количество соединений, изучена их структура методами рентгенографии и инфракрасной спектроскопии методами ЯМР и ЭПР изучено электронное строение и влияние примесей на это строение. Знание основных структурных типов окисных соединений редкоземельных элементов позволило выявить [c.6]

    Электронные конфигурации. Почти все физические и химические свойства редкоземельных элементов находят логическое объяснение в строении их электронных конфигураций. Скандий, иттрий, лантан и актиний первые члены соответственно первого, второго, третьего и четвертого переходных рядов элементов. Другими словами, для каждого из этих элементов характерно начало внутренней надстройки, при которой устойчивая восьмиэлек- [c.32]

    В настоящем сборнике рассмотрены физико-хпмп-ческие свойства (главным образом магнитные и электрические) и пх связь с кристаллической структурой и строением электронных оболочек элементов для ряда сложных конденсированных систем (интерметадличе-ские соединения, гидриды переходных металлов, системы окислов редкоземельных металлов). Рассмотрены также магнитные свойства соединений урана, структура и свойства полупроводников типа А — В ", катализаторов и окрашенных центров кристаллов галогенидов щелочных металлов. Приведены методы определения и расчета термодинамических функций для сплавов металлов и расплавов солей и метод математической обработки структурных исследований с помощью вычислительных машин. [c.199]

    Таким приемом получены чистые препараты редкоземельных элементов с очень близкими свойствами. Ионообменная хроматография их основывается на различии свойств их комплексных соединений, поскольку именно в комплексных соединениях наиболее полно проявляются и находят отрансение тонкие различия в величинах ионных радиусов и строении электронных оболочек. Этим же путем удается разделить смеси ионов меди, кадмия, молибдена, железа, урана, вольфрама, свинца, бериллия и других элементов. [c.90]

    В трудах многих химиков, и в значительной степени Урбэна, были нриблизнтельно установлены химические границы цериевой и иттриевой групп. Мы говорим химические, так как они не всегда совпадают с границами групп редкоземельного семейства, установленными позднее физикой на основании строения электронных оболочек. Об этом мы поговорим позже. [c.34]

    Электронные представления Стонера впос.педствии оказались ошибочными, и схема Хевеши потеряла свою основную опору. Однако она была первой попыткой увязать изменение некоторых свойств лантаноидов с теорией строения атома. Хевеши был близок к тому, чтобы непосредственно перейти к периодической системе редкоземельных ионов, но в этом вопросе он не сказал последнего слова. [c.97]

    Значительная часть структурных исследований, упомянутых ниже, посвящена определению строения силикатов и германатов редкоземельных элементов. Изучение структур этих соединений весьма важно по многим причинам. В частности, большой интерес для кристаллохимии представляет определение силикатных и германатных структур в ряду редкоземельных элементов с катионами, обладающими одинаковой внешней электронной оболочкой и поэтому слабо различающимися по своим химическим свойствам, но монотонно изменяющимися по величине от соединения к соединению. Использование точных методов оценки интенсивностей при исследовании этих структур позволило преодолеть некоторые затруднения, связанные с тем, что в изучаемых кристаллах вклады тяжелых атомов в рентгеновские отражения ряда соединений превышают вклады легких более чем втрое. Поэтому надежное определение координат легких атомов и достаточно точные величины межатомных расстояний могли быть получены только нри возможно более полных и точных экспериментальных данных. [c.108]

    Не меньшую дискуссию вызвало размещение редкоземельных элементов. Сам Д. И. Менделеев окончательно не решил этот вопрос. В частности, он рассматривал церий как элемент четвертой группы. Остальные редкоземельные элементы Д. И. Менделеев пытался расположить в различных группах (третьей, четвертой, пятой) пятого и шестого периодов. Вопрос о размещении редкоземельных элементов был решен Н. Бором на основе квантовой теории строения атомов. Из системы квантовых чисел (см. табл. 12) вытекает, что число возможных орбиталей для размещения электронов 4/-уровня не превышает 14.. Поскольку атомы редкоземельных элементов строятся таким образом, что у них в конечном счете происходит построение 4/-орбиталей, то число соответствующих элементов должно быть равным 14. Исследование строения атомов редкоземельных элементов (с применением оптических методов) показало, что внешние орбитали у них аналогичны Следовательно, все эти элементы являются аналогами и должны быть отнесены к одной и той же группе периодической системы — к третьей. Строение лантана, гадолиния и лютеция характеризуется наличием Бй-орбитали, электронные формулы этих элементов имеют вид 4/ 5 5526р 6з . Определение зарядов ядер лантана и 14 редкоземельных элементов окончательно подтвердили размещение их под атомными номерами 57—71 в третьей группе шестого периода. Несмотря на это, некоторые авторы до сих пор пытаются распределить редкоземельные элементы между различными группами периодической системы. [c.53]

    Чаще всего для этих целей пользуются различием свойств комплексных соединений. Комплексные соединения редкоземельных элементов играют важную роль в процессах их разделения, а также представляют научный интерес в связи с положением этих элементов в периодической системе Менделеева и строеннем нх электронных оболочек. [c.337]


Смотреть страницы где упоминается термин Редкоземельные электронное строение: [c.141]    [c.278]    [c.142]    [c.160]    [c.351]    [c.19]    [c.400]    [c.384]    [c.158]    [c.201]   
Ионообменная технология (1959) -- [ c.375 ]

Ионообменная технология (1959) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Электронное строение

электронами электронное строение



© 2024 chem21.info Реклама на сайте