Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышечное сокращение, влияние

    Процессы брожения имеют большое значение в промышленности. Биохимические процессы, происходящие под влиянием ферментов, в ряде производств используются с практической целью. В организмах высших животных непрерывно протекают процессы биохимического расщепления и синтеза моносахаридов. При мышечном сокращении, в результате расщепления углеводов, образуется молочная кислота, а также ряд других продуктов. [c.338]


    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]

    Мы рассмотрели несколько биологически важных внутриклеточных структур, имеющих характер частицы и выполняющих определенные более или менее известные функции. Понимание природы этих частиц может послужить выяснению ряда других динамических процессов, происходящих в живой клетке и, следовательно, в тканях. Если взять, к примеру, мышечное сокращение, то в нем в единый комплекс сплетаются влияние нервного импульса, гистологической структуры мышц, молекулярного строения мышечных белков, их ферментативных свойств, биохимических реакций, электрохимических изменений и ряда тепловых и физико-механических процессов. В простейших организмах функции подвижности и возбудимости связаны практически с одними и теми же биологическими структурами, но в результате дифференцирования в процессе эволюции они проявляются затем в различных специализированных структурах в конечном счете в скелетной мускулатуре и нервной системе. Естественно, что структура и биохимические процессы в мышечной и нервной тканях отличаются необычайной сложностью и их рассмотрение следует отнести к области специальной литературы. [c.312]

    Хотя в процессе полимеризации и происходит гидролиз связанного АТР, сама полимеризация энергии не требует она идет, даже если, с актином связан ADP или негидролизуемый аналог АТР. Однако гидролиз АТР оказывает существенное влияние на динамическое поведение актиновых филаментов это мы увидим позже, когда будем рассматривать те виды клеточной активности, которые (в отличие от мышечного сокращения) зависят от контролируемой полимеризации и деполимеризации актина. [c.258]


    Мышечное сокращение не принадлежит к ряду феноменов все или ничего , как может показаться читателю. Оно представляет собой тонкое динамическое равновесие между процессами присоединения и отделения миозиновых головок от F-актина. Система находится под сложным регуляторным влиянием со стороны нервной системы. [c.338]

    Возможно, когда-то давно органы чувств были связаны с мышцами более или менее напрямую в сущности ныне живущие актинии недалеко ушли от такой организации нервно-мышечной системы, поскольку для их образа жизни она достаточно эффективна. Но для обеспечения более сложных и непрямых связей между координацией во времени мышечных сокращении в зависимости от событий, происходящих во внешнем мире, необходим в качестве посредника мозг того или иного рода. Заметным продвижением вперед было изобретение в процессе эволюции памяти. Благодаря памяти на координацию мышечных сокращений могут оказывать влияние не только недавние события, но и события весьма далекого прошлого. Память, или накопитель, составляет существенную часть цифровой вычислительной машины. Память компьютера более надежна, чем память человека, но она обладает меньшей емкостью и значительно менее изобретательна в отношении способов поиска информации. [c.45]

    Активация адреналином мышечной гликогенфосфорилазы происходит иначе, так как распад гликогена в скелетных мышцах стимулируется мышечными сокращениями (рис. 6.13). Киназа фосфорилазы (Са "-зависимая) активируется при мышечной работе под влиянием нервного импульса, так как в саркоплазме в этом случае возрастает концентрация ионов кальция. Это еще один механизм ускорения распада гликогена в мышце. Результатом дей- [c.145]

    Сокращение мацерированного (вымоченного в воде или в 50% растворе-глицерина) мышечного волокна под влиянием АТФ отличается от сокращения. [c.418]

Рис. 49. Сокращение актомиозиновой нити, приготовленной из миозина щенка и актина кролика, под влиянием мышечной АТФ. Рис. 49. Сокращение <a href="/info/188100">актомиозиновой</a> нити, приготовленной из миозина щенка и актина кролика, под влиянием мышечной АТФ.
    Сокращение мацерированного (вымоченного в воде или в 50%-ном растворе глицерина) мышечного волокна под влиянием АТФ отличается от сокращения живой мышцы при раздражении ее с нерва лишь меньшей скоростью этого процесса и отсутствием обратного расслабления после отмывания аденозинтрифосфата (по крайней мере в обычных условиях опыта). [c.441]

    В клетках митохондрии часто располагаются в том месте, где используется энергия АТФ. В мышечных клетках митохондрии находятся около сократительных элементов - миофибрилл - и обеспечивают энергией их сокращение в процессе мышечной работы. Под влиянием систематических тренировок количество митохондрий в мышечных клетках значительно увеличивается. [c.41]

    Отмеченные работы представляют собой первую попытку связать механические свойства белкового вещества с его химическим и пространственным строением. Дальнейшим развитием этого направления можно считать изучение Мейером мышечных белков. Было показано, что макроскопическое сокращение мускулов связано с изменением молекулярной формы белковых цепей. Проведя совместное механическое и рентгеноструктурное исследование, Мейер пришел к заключению, что в ослабленных мускулах имеются параллельно ориентированные цепи главных валентностей, а в сокращенных их нет. Он наблюдал дифракционную диаграмму у высушенного в растянутом виде мускула, типичную для волокнистой структуры, отвечающую аморфному состоянию. Такой интерпретации удовлетворяли данные опытов с замороженным белком. Растянутый мускул легко расслаивался при температуре жидкого воздуха вдоль предполагаемых волокон, тогда как сокращенный препарат в этих же условиях распадался на комочки. По этому поводу Мейер в 1930 г, писал "Белковые цепи, скрепляющиеся друг с другом по всей длине мускула в определенных местах посредством молекулярных сил сцепления несольватируемых групп или какими-нибудь другими связями и сокращающиеся или растягивающиеся под влиянием меняющейся величины pH, должны вызывать сокращения или же ослабления на протяжении всей длины мускула. Этим макроскопическое сокращение сводится в конце концов к внутримолекулярному процессу" [3. С. 435]. И далее он делает не менее важное и новое для того времени замечание "Нет сомнения в том, что источником мускульной энергии и причиной движения является химический выделяющий энергию процесс" [3. С. 438 см. также 4. С. 64]. [c.10]

    У нормального животного активность моторных гамма-волокон протекает непрерывно, и на рис. 14.9Б показано влияние этой активности при пассивном растяжении. В общем происходит усиление фоновой импульсации в сенсорных волокнах вследствие фоновых сокращений интрафузальных мышечных волокон и повышение чувствительности к прилагаемому растяжению. Но на сухожильные органы интрафузальные сокращения не действуют. [c.362]


    Так же как и другие киназы, протеинкиназа и киназа фосфорилазы требуют для своей активности ионы магния. Кроме того, киназа фосфорилазы в своей неактивной форме аллостерически активируется ионами кальция. Напомним, что инициирование процесса мышечного сокращения вызывается нервными импульсами, которые стимулируют освобождение ионов кальция из пузырьков эндоплазматического ретикулума. Таким образом, ионы кальция не только включают процесс мышечного сокращения, но и ускоряют процесс фосфорилирования фосфорилазы Ь в фосфорилазу а. Теперь некоторые этапы каскадного механизма становятся яснее. Оказывается, что наиболее важная стадия, катализируемая киназой фосфорилазы, нужна для того, чтобы дать возможность реализоваться следующей стадии, на которую оказывают специфическое влияние ионы кальция, освобождающиеся при нервном возбуждении. С другой стороны, возможность активации киназы фосфорилазы в результате фосфорилирования протеинкиназой делает процесс чувствительным к гормональной стимуляции. [c.509]

    Следовательно, возбудимость мышцы возникает при изменении ионного коэффициента Лёба. Сдвижение ионного соотношения в сторону преобладания одновалентных ионов вызывает возбуждение, сдвиг в сторону увеличения двухвалентных ионов вызывает тормозящее, угнетающее возбудимость действие. Нормально мышцы возбуждаются под влиянием раздражения со стороны нерва. Нервный импульс вызывает возбуждение мышцы, и только вслед за этим следует мышечное сокращение. Вполне вероятно, что под влиянием нервного импульса происходит сдвижение ионного коэффициента Лёба в мышце. Это, в частности, доказывается экспериментами самого Лёба, произведенными им над колоколом медузы. [c.140]

    Свободные моносахариды, глюкоза например, в случае брожения дрожжевым соком получают фосфорную кислоту от аденозинтрифосфата (АТФ). Перенос фосфатного остатка с аденозинтрифосфата совершается при участии фермента гексокипазы. Первым продуктом фосфорилирования является гек-созо-6-фосфат. В случае же мышечного сокращения первым продуктом фосфорилирования гликогена, как уже известно, будет гексозо-1-фосфат. Одновременно под влиянием изомеразы происходит изомеризация глюкозо-6-фосфата во фруктозо-6-фосфат. Этот последний получает за счет аденозинтрифосфата в результате перефосфорилирования вторую молекулу фосфорной кислоты, которая становится при первом углероде. Таким образом возникает фруктозе-1,6-дифосфат (гексозодифосфат). Все это мол ет быть формулировано в тех же выражениях, как и в случае уже рассмотренного гликолиза, только исходным веществом будет глюкоза (иногда крахмал). [c.385]

    ПО Т-трубочкам, саркоплазматический ретикулум выбрасывает в цитозоль большие количества ионов Са , что посредством вспомогательных мышечных белков поддерживает нужное расположение активных миозиновых филаментов и тем самым инициирует сокращение мио-фибрилл. В гладких мышцах изменение концентрации ионов Са +, помимо влияния гормонов, определяется также Са-связывающим белком -кальмодулином. В комплексе с Са + он активирует киназу легких цепей миозина. Образовавшийся тройной комплекс индуцирует каскад реакций сокращения мышц (рис. 1.36). Сигнал от мембраны мышечной клетки через Т-трубочки и саркоплазматический ретикулум доходит до саркомеры за несколько миллисекунд, поэтому все миофибриллы мышечной клетки сокращаются практически одновременно. Связь мышечного сокращения с изменениями концентрации Са " обусловлена функциями вспомогательных белков тропомиозина и тропонина, ассоциированных с актиновыми филаментами (рис. 1.32). Они участвуют в регуляции мышечного сокращения ионами Са + и тем самым делают АТРазную активность миозина чувствительной к концентрации этих ионов. [c.129]

    В порядке обсуждения следовало бы поразмышлять о генах для выполнения всякого рода маловероятных задач. Если я начну говорить о гипотетическом гене для спасения тонущего компаньона , а вы сочтете такую концепцию неправдоподобной, вспомните историю санитарных пчел . Вспомните, что мы не считаем гены единственной причиной, порождающей все сложные мышечные сокращения, сенсорные интеграции и даже сознательные решения, участвующие в спасении тонущего человека. Мы ничего не говорим о том, участвуют ли в развитии такого поведения научение, опыт или влияния окружающей среды. Вы должны лишь допустить, что один ген — при прочих равных условиях и при наличии множества других важных генов и внешних факторов — с большей вероятностью обеспечит данному телу возможность спасти тонущего человека, чем аллель этого гена. Может оказаться, что в основе этого различия между двумя генами лежит небольшое различие по какой-то простой количественной переменной. Детали процесса эмбрионального развития, какими бы интересными они ни были, не имеют отношения к эволюционным соображениям. Очень хорошо выразил это Конрад Лоренц (Konrad Lorenz). [c.55]

    Являясь той основной средой, в которой внутри клетки распределены молекулы разнообразных биополимеров, вода непосредственно аствует в формировании золей и гелей протоплазмы. Переход золей в гели и обратно сопровождается часто явлением тиксотропии (от греч. тиксис—прикоснуться и троп—поворот, изменение), т. е. разжижением геля под влиянием механических сил (например, встряхивания) и обратным его застыванием. Этому сопутствует резкое изменение вязкости, тесно связанное с рядом физиологических и биологических явлений мышечным сокращением, дифференциацией некоторых внутриклеточных структур, клеточным делением, движением протоплазмы и т. п. [c.433]

    Биологическое действие -МСГ, как и других форм, не ограничивается меланотропной активностью, на которую прежде всего было обращено внимание, что и нашло отражение в названии семейства этих гормонов. Помимо влияния на пигментацию кожи и волос они обнаруживают ряд других активностей. Так, -МСГ является сильнодействующим натрий- и калий-уретическим фактором, влияет на выделение гормона роста, проявляет стероидогенную, липолитическую активность, оказьшает положительное влияние на нервную и мышечную системы. Инъекция -МСГ млекопитающим и человеку вызьшает увеличение частоты сердечных сокращений, гиперчувствительность и ряд поведенческих актов. Клинические данные показывают, что гормон повышает чувствительность сетчатки и улучшает адаптацию глаза к темноте. Имеются сведения, которые указывают на роль меланотропинов в качестве нейротрансмиттеров и нейромодуляторов центральной нервной системы. Отмечаются положительные эффекты МСГ на внимательность и память [198-206]. [c.363]

    Сокращение и расслабление скелетных мышц регулируется концентрацией Са в цитозоле. В состоянии покоя концентрация Са в мышце обьгано очень низка. При стимуляции мышечного волокна импульсами двигательного нерва Са высвобЬждается из поперечных мембранных трубочек мышечной клетки. Этот высвободившийся Са связывается со сложным регуляторным белком тропонином, молекулы которого присоединены через определенные промежутки к тонким нитям. Молекулы тропонина играют роль триггера, т. е. пускового механизма, Они претерпевают конформационное изменение, которое оказывает влияние на миозиновые головки в толстых нитях. В них возбуждается АТРазная активность и таким образом инициируется сокращение. Тропонин остается активным до тех пор, пока в цитозоле мышечного волокна присутствует Са . Расслабление мышцы происходит после того, как нервные импульсы перестают к ней поступать и Са за счет действия находящейся в мембране АТРазы, выполняющей роль кальциевого насоса, переносится из саркоплазмы в цистерны саркоплазматического ретикулума. Таким образом, АТР необходим не только для сокращения мышц, но и для их расслабления. Позже мы уви- [c.423]

    Как установлено, в живых мышечных волокнах наряду с АТФ имеется особое белковое вещество, так называемый фактор Марша—Вендалла, угнетающее аденозинтрифосфатазную активность актомиозина и тем препятствующее сокращению мышечного волокна, находящегося под нагрузкой, в присутствии АТФ. Если на вымоченное в 50% растворе глицерина мышечное волокно, максимально сократившееся в растворе Сент-Дьердьи под влиянием АТФ и находящееся под нагрузкой, подействовать вытяжкой из свежеизмельченной мышечной ткани, содержащей фактор Марша, то при определенной концентрации в растворе ионов магния наблюдается довольно быстрое расслабление волокна. [c.430]

    Актомиозин при этом не только переходит под влиянием АТФ в сокращенное состояние, но и одновременно расщепляет ее с образованием АДФ и Н3РО4 АТФ + актомиозин + HgO — АДФ + Н3РО4 + сокращенный актомиозин. Несомненно, что работа мышцы (или любой органеллы движения) выполняется за счет энергии, аккумулированной в терминальных фосфатных связях АТФ. (Напомним, что при гидролизе АТФ в физиологических условиях освобождается около 8000, по другим данным 10 ООО кал энергии на моль Н3РО4.) Кислород не принимает участия в осуществлении этой первой, наиболее важной фазы мышечной деятельности. [c.448]

    Изучение влияния препаратов на функцию нервно-мышечного соединения проводилось двумя методами. Во-первых, определялись концентрации фосфорорганических веществ, которые обусловливают появление или усилепие остаточной контрактуры изолированной прямой мышцы живота лягушки после ее сокращения, вызванного электрическим раздражением двигательного нерва. Раздражение производилось прямоугольными импульсами падпороговой амплитуды, при частоте 25 гц и длительности каждого импульса 1 мсек. Продолжительность каждого раздражения [c.463]

    Сокращение мышечных волокон вызывается илшульсами, идущими от нервных окончаний. В ответ иа раздражение нерва мышца реагирует быст-[)ым сокращением, а затем расслаблением. Мацерированные же, безжизненные мышечные волокна при взаимодействии их с аденозинтрифосфорной 1СИСЛ0Т0Й в водном растворе сокращаются медленно и не расслабляются даже после отмывания от них аденозинтрифосфорной кислоты. Все же следует указать, что установленный факт изменения физико-химического состояния актомиозиновых нитей и мацерированных мышечных волокон под влиянием аденозинтрифосфорной кислоты представляет значительный интерес, так как он расширяет наши представления о физиологической роли аденозинтрифосфорной кислоты в мышцах (стр. 549). [c.544]

    Скелетные мышцы, как и миокард, относятся к типу поперечнополосатых и состоят нз волокон (клеток), на которых оканчиваются разветвления соответствующего нерва, управляющего состоянием мышцы. В каждой двигательной единице, т.е. совокупности мьппечных волокон и иннервирующих нх разветвлений аксона определенного двигательного нейрона, мышечные волокна сокращаются почти одновременно под влиянием приходящих по аксону импульсов возбуждения. Механизм генерации и распространения импульса электрического возбуждения в мышечном волокне очень близок к механизму электрического возбуждения нерва (особенно это относится к так называемым быстрым мышечным волокнам). В частности, каждый импульс начинается с локальной деполя 1зации клеточной мембраны, в результате которой развивается потенциал действия. При зтом возникают клеточные генераторы и соответствующее электромагнитное поле в окружающем мышцу пространстве. Плавное сокращение мышцы фактичес- [c.139]

    Первые исследования электрических явлений, сопровождающих возникновение и распространение возбуждения у высших растений, были выполнены во второй половине XIX в. под влиянием бурно развивающейся электрофизиологии животных. Основателями нового направления науки о растениях можно называть трех исследователей действительного члена Британского Королевского общества Бердон-Сандерсона, немецкого естествоиспытателя Мунка и русского ботаника Н. Деваковского. Их исследования проводились на локомоторных растениях мимозе [137] и венериной мухоловке [339, 5271. Все они в той или иной степени экспериментально обосновывали идею о том, что передача возбуждения у "чувствительных" растений осуществляется с помощью электрического сигнала, как и в возбудимых тканях животных (в нервно-мышечном препарате). Работы эти были с энтузиазмом встречены научной общественностью того времени. Дарвин в своем труде "Насекомоядные растения" писал "... изумительное открытие, сделанное д-ром Бердон-Сандерсоном, теперь всем известно, а именно что в пластинке и черешке нормально существует электрический ток и что при раздражении листьев этот ток нарушается совершенно также, как при сокращении мускула животного" [78. с. 507]. Необходимо отметить, что исследования Бердон-Сандерсона [339, 340] не ограничивались установлением простой аналогии электрических явлений в мышце и "ловчей" пластинке венериной мухоловки. Он довольно точно определил скорость движения импульса, показав, что двигательная реакция начинается значительно позднее того, как импульс достигает листа. [c.98]

    Нервные пути, регулирующие деятельность сердца, изображены на рис. 19.9. Симпатическая иннервация сердца осуществляется постганглионарными волокнами, идущими от симпатической системы. При возбуждении из окончаний этих волокон освобождается норадреналин, действующий на Ргздренорецеп-торы клеток сердца. Стимуляция этих рецепторов приводит к активации аденилатциклазы в дальнейшем развертывается цепь событий, которую мы уже рассматривали как в настоящей главе, так и при обсуждении рис. 9.9. В конечном счете увеличивается проницаемость мембраны мышечных клеток главным образом для ионов Са= + это приводит к повышению частоты и силы сердечных сокращений и к ускорению проведения импульсов. Увеличение кальциевой проницаемости сходно с тем, что было обнаружено в некоторых нейронах (см. гл. 9) при модулирующем влиянии медиаторов на возбудимые кальциевые каналы. [c.43]

    ЦНС не только получает информацию от мышечных веретен, но и оказывает на них влияние через у-мотонейроны. Это осуществляется с помощью тонких (2—4 мкм) двигательных нервных волокон — фузимоторных, или у-волокон, вызывающих сокращение интрафузальных мышечных волокон. Двигательные нервы интрафузальных волокон веретена настраивают чувствительность мышечных веретен таким образом, чтобы они могли работать при разной длине мышцы. Между двигательными окончаниями и плазмолеммой мышечного волокна существует синаптическая щель, в которую проникает вещество базальной мембраны. [c.39]


Смотреть страницы где упоминается термин Мышечное сокращение, влияние: [c.118]    [c.275]    [c.188]    [c.6]    [c.291]    [c.258]    [c.269]    [c.12]    [c.360]    [c.12]    [c.7]    [c.64]    [c.363]    [c.64]    [c.311]   
Токсичные эфиры кислот фосфора (1964) -- [ c.181 , c.184 ]




ПОИСК







© 2025 chem21.info Реклама на сайте