Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Буферные ряды аммиачный

    В ряде случаев для удаления кислорода можно использовать и другие приемы. Например, в аммиачном буферном растворе, широко используемом в полярографии в качестве фонового электролита, кислород удаляют добавлением сульфита натрия. Если кислород не мешает определению, то в качестве электролизера можно использовать обычный химический стакан вместимостью 50 мл. [c.180]

    Кроме того, в этом случае необходимо удалять растворенный кислород и тратить время на успокоение раствора после перемешивания при прибавлении очередной порции титранта. Тем не менее с помощью капающего ртутного электрода можно выполнить целый ряд полезных определений, например титровать никель (II) раствором диметилглиоксима. Этот случай интересен тем, что способностью восстанавливаться на ртутном электроде обладает не только никель (II), но и диметилглиоксим. На фоне аммиачного буферного раствора (pH 8-10), то есть в условиях количественного осаждения никеля (II) диметилглиоксимом, никель (11) образует волну с Ещ = -1,2 В, а диметилглиоксим - волну с Ещ = -1,55 В. Поэтому вид кривой титрования будет зависеть от выбранного потенциала. Если титрование проводить при потенциале -1,3 или -1,4 В, то есть в условиях, когда электроактивен только никель (II), то получится кривая, показанная на рис. 94, а. Если же титрование проводить при потенциале -1,85 В, сила тока до достижения конечной точки титрования будет уменьшаться по мере уменьшения концентрации никеля (II), но затем начнет расти с увеличением концентрации избытка диметилглиоксима, поскольку при этом потенциале электроактивен и титрант. В этом случае кривая титрования будет подобна кривой, изображенной на рис. 94, б. [c.188]


    Наиболее распространенные фоны в постояннотоковой полярографии цинка — аммиачные буферные растворы — используют и в ППТ, хотя восстановление Zn в этих растворах протекает необратимо. Процесс восстановления Zn п—2) на фоне ряда кислот протекает квазиобратимо  [c.208]

    На рис. 8 изображена кривая титрования 5 мл 0,04 Л] ацетатно-аммиачного буферного раствора, приготовленного на дистиллированной во е, 1 10 Л1 раствором ДДК. В ряд пробирок приливают возрастающие количества раствора ДДК, буферный раствор и 0,2 мл 2.10 М спиртового раствора II. Через 10—15 минут приливают комплексон III и измеряют интенсивность флуоресценции. Как видно из рис. 8, точка эквивалентности отвечает концентрации ДДК 2.10 " М. В дальнейшем для проведения анализа в определенный объем разбавленного буферного раствора добавляют рассчитан- [c.182]

    Построение калибровочного графика. В ряд мерных колб емкостью 25 мл вводят по 1 мл раствора пирокатехинового фиолетового и по 2 лл раствора борной кислоты взбалтывают, прибавляют от 1 до 5 мл, с интервалом 1. мл, стандартного раствора хлорида иттрия и по 10 мл ацетатно-аммиачного буферного раствора. Растворы перемешивают, вводят по 3—4 капли перекиси водорода и разбавляют до объема 25. ил ацетатно-аммиачным буферным раствором. Через 10—15 мин измеряют на фотоэлектроколориметре оптическую плотность растворов относительно нулевого раствора и строят калибровочный график. [c.79]

    Для разделения низкомолекулярных соединений, экстрагированных разбавленной кислотой из подзолистой почвы горизонта Б, предложен ряд методов [15]. Разделение проводили осаждением после добавления сначала раствора солей двухвалентного свинца или избытка двухвалентного бария, после этого — избытка двухвалентной меди и затем избытка двухвалентного свинца. Ионы металлов удаляли из экстрактов, пропуская их через колонку, заполненную насадкой дауэкс 50. Дальнейший анализ проводили на колонке с целлюлозой. Для разделения на бумаге этих соединений было испытано большое количество элюентов, в том числе нейтральных, кислотных, основных и буферных. В ряде экспериментов бумагу предварительно пропитывали буфером. Оптимальными составами элюентов оказались смесь метилэтилкетон— ацетон — уксусная кислота — вода [16] и системы на основе смеси изопропанол — вода, которые подкисляли уксусной кислотой или подщелачивали аммиачной водой или буфером. Содержание изопропанола колебалось от 40 до 60%. Для соединений с большой молекулярной массой и более темной окраской следует применять растворители с большим содержанием воды. Основные, кислотные и буферные элюенты разделяют смеси на более компактные хроматографические зоны по сравнению с нейтральными элюентами. Проявление хроматограмм лучше всего проводить, облучая их УФ-светом. Изучение хроматограмм показывает, что в каждой из описанных методик часть соединений остается полностью или частично неразделенными [15]. Первая элюируемая из колонки фракция и соединения, в последнюю очередь выпадающие в осадок при добавлении ионов металлов, имеют самую светлую окраску, характеризуются максимальными значениями Rf и дают наиболее характерные реакции с реактивами, которыми опрыскивают хроматограмму для ее проявления. Так, фракция, элюируемая из [c.305]


    В ходе этого процесса образуется ряд летучих жирных кислот (молочная, уксусная, пропионовая и др.), но главным субстратом при синтезе метана является уксусная кислота. Метан-образующие бактерии могут также синтезировать метан из СОг и Нг. Оптимум pH для них тот же (6—7), что и для бактерий первой группы, и это важно, поскольку нарушение баланса образования и потребления кислот приведет к падению pH, если система не обладает достаточными буферными свойствами. Всякое падение pH по этой причине преимущественно сказывается на активности метанобразующих бактерий, что вызывает дальнейшее закисление среды и прекращение образования метана. С этим можно бороться, добавляя известняк или аммиачную воду, но при внесении ионов аммония следует соблюдать осторожность. Метанобразующие бактерии могут использовать аммонийные ионы как источник азота, но при высоких концентрациях они ингибируют их рост. К числу других веществ и соединений, способных ингибировать процесс, относятся кислород и окисленные соединения, такие, как нитрат и нитрит, сульфиды, цианиды, свободные ионы металлов (меди, цинка или никеля), галогены, формальдегид и сероводород. Система чувствительна также к резким скачкам температуры. [c.77]

    Для этого было исследовано влияние концентрации хлористого калия, добавляемого в боратный буферный раствор (сумма концентраций борной кислоты и бората калия 0,10 М pH 8,4), на полярограммы системы Со (II) — цистеин при неизменных концентрациях СоС12 (1774 мМ) и цистеина (0,08 мМ Боратный буферный раствор был взят вместо традиционного аммиачного для того, чтобы избежать ряда осложнений и в первую очередь уменьшения приэлектродной буферной емкости аммиачного раствора при добавлении КС1, ибо ионы аммония, являясь донорами протонов, участвуют также в построении внешней обкладки двойного слоя. Величина pH раствора была выбрана такой, чтобы [c.105]

    Ионы Zn(II) необратимо восстанавливаются из нейтральных и щелочных (иапример, из аммиачных буферных) растворов, что затрудняет его определение методами переменнотоковой полярографии. При подкисленин растворов степень обратимости возрастает и на фоне ряда кислот процесс восстановления протекает квазиобратимо, что значительно улучшает условия определения ионов 2п(П). В то же время в сильнокислых растворах потенциалы восстановления ионов цинка и водорода существенно сближаются, так что раздельное определение их методом постояннотоковой и дифференциальной импульсной полярографии делается невозможным. Поскольку ионы водорода восстанавливаются на ртути существенно необратимо, то при использовании метода синусоидальной перемениотоковой полярографии мешающее действие ионов водорода устраняется. В то же время в кислых средах необратимо происходит и восстановление кислорода, так что его сигнал на полярограмме не проявляется. В связи с этим применение переменнотоковой полярографии позволяет избежать продолжительной операции его удаления, упрощает конструкцию ячейки и оснащение рабочего места в полярографической лаборатории. [c.299]

    Титрование этилендиаминтетрауксусной кислотой с применением специфических индикаторов. Точку эквивалентности при титровании устанавливают по появлению или исчезновению синей или голубой окраски роданидного комплекса кобальта [1300, 1301, 1394]. Для отделения кобальта от других элементов осаждают его в виде акридинроданидного тройного соединений [1460]. Осадок растворяют в ацетоне и титруют кобальт раствором комплексона III до исчезновения синего окрашивания. Предложено [1395] осаждать кобальт в виде гексанитрокобальтиата калия и натрия, растворять осадок в концентрированной соляной кислоте и титровать ионы кобальта в ацетатном растворе комплексона III в присутствии роданида и ацетона. Вместо ацетона можно пользоваться амиловым спиртом [1299], причем синий роданидный экстракт кобальта в амиловом спирте может служить индикатором при определении ряда других катионов, образующих с комплексоном III более прочные комплексы, чем кобальт (кальций, свинец, торий и др.). Индикатором может служить также хлороформный раствор синего соединения кобальта с роданидом и трифенилметиларсонием [536]. К анализируемому раствору, содержащему от 2 до 2 мг Со, прибавляют 25 мл 0,01 N раствора комплексона III, 1 М раствор гидроокиси аммония до щелочной реакции по лакмусу, вводят 10 мл хлороформа, 2 мл аммиачного буферного раствора с рн 9,3, 5 мл 50%-ного раствора роданида калия, 3 мл 1%-ного раствора хлористого трифенилметиларсония и оттитровывают избыток раствора комплексона III стандартным раствором сульфата кобальта до появления синего окрашивания хлороформного слоя. Метод рекомендуется применять для опре- [c.124]


    Предложен ряд вариантов комплексонометрического определения магния при помош и ДЦТА в материалах, содержаш,их фосфаты. При прямом титровании [1242] к анализируемому раствору добавляют комплекс цинка с ДЦТА, доводят pH до 3—4, смесь хорошо перемешивают, создают pH 8—10 прибавлением аммиачного буферного раствора, вводят эриохром черный Т и титруют магний раствором ДЦТА. Раствор во время титрования надо поддерживать горячим и около эквивалентной точки следует титровать медленно. Этот вариант для практического использования неудобен лучше обратное титрование [825, 826]. В этом случае титруют при комнатной температуре. Наличие избытка ДЦТА и отсутствие аммиака в растворе при обратном титровании предотвраш,ает осаждение магния в виде MgNH4P04, и фосфат-ион не мешает титрованию магния даже при соотношении 2500 1. Обратное титрование выполняется значительно быстрее, чем прямое (определение из готовых растворов длится 20 мин.). Метод пригоден для определения очень малых количеств магния (0,1% и выше). Проводят три титрования. Обратным титрованием избытка ДЦТА раствором М 304 при pH 10 с эриохром черным Т находят суммарное содержание всех металлов обратным титрованием избытка ДЦТА раствором Z nS04 при pH 5 с ксиленоловым оранжевым находят сумму металлов, мешаюш их определению магния обратным титрованием избытка ДЦТА раствором СаС1а при pH 12 в ультрафиолетовом свете с кальцеином определяют содержание кальция. Количество магния находят по разности из этих трех титрований. Фотометрическое фиксирование конца титрования в описанном методе позволяет получить большую точность, чем при визуальном титровании [826] сумму всех металлов титруют при 650 нм сумму мешающих металлов при 600 нм. [c.98]

    Ртутный капающий электрод в амперометрическом тшровании применяют гораздо реже. К его помощи обычно прибегают, проводя титрование по току восстановления определяемого иона металла. Селективность таких определений не очень высока. Кроме того, в этом случае необходимо удалять растворенный кислород и ждать успокоения раствора после перемешивания при прибавлении очередной порции тшранта. Тем не менее с помощью капающего ртутного электрода можно выполнить целый ряд определений. Например, титровать никель (II) раствором ди-метилглиоксима. Этот случай шггересен тем, что способностью восстанавливаться на ртутном электроде обладает не только никель (П), но и диметилглиоксим. На фоне аммиачного буферного раствора с pH 8—10, т. е. в условиях количественного осаждения никеля диметилглиоксимом, никель образует волну с Еу = -1,2 В, а диметилглиоксим — волну с [c.185]

    Оксин, или 8-оксихинолии, является осадителем ионов ряда металлов. Разделение ионов тяжелых металлов в общем более удобно осуществляется методом экстракции, чем осаждения. Это позволяет избежать соосаждения и, кроме того, достичь более высокой избирательности благодаря использованию дополнительных комплексантов. Тем не менее оксин уже давно применяется 20 для отделения ионов алюминия от ионов щелочных и щелочноземельных металлов, в том числе — от ионов магния и бериллия. Осаждение проводят в буферной смеси уксусная кислота — ацетат аммония. Флегг описывает также другие методы разделения. Магний можно отделить от щелочных и щелочноземельных металлов осаждением из аммиачных буфера ных растворов [c.284]

    Для определения примеси селена в сере за последние 20 лет предложен ряд новых органических реагентов [24—33]. Широкое применение нашел 3,3 -диаминобензидин, который с селенистой кислотой образует соединение, окрашенное в интенсивно желтый цвет, экстрагирующееся толуолом, бензолом и другими органическими растворителями. Реактив применяется для определения селена в мышьяке высокой чистоты [26] и для анализа серы [33]. Чувствительность метода 0,5 мкг Зе в 1 ж./г толуола. Средняя ошибка определения 10—15% [29]. Мешают большие количества тяжелых металлов, для связывания которых к растворам добавляют комплексообразователи. Реактив способен изменяться под влиянием кислорода воздуха и света [28]. Работать лучше со свежеприготовленным раствором. Для определения примеси селена в веществах особой чистоты 3,3 -диаминобензидин весьма перспективен, так как обладает высокой чувствительностью, особенно если применить флюориметриче-ский метод [30, 31]. Легкая электровосстанавливаемость анионов селенистой кислоты на ртутном капельном электроде использована многими исследователями (34—37] для полярографического определения селена. Чаще всего определение проводят в аммонийно-аммиачном растворе с pH 8—8,5, на фоне которого ионы селенистой кислоты образуют хорошо выраженные волны. Определение селена в сере проводят в аммиачном буферном растворе при pH 8—8,2 в присутствии пирофосфата натрия без предварительного отделения от Те, Аз, Ре и Си [12]. Потенциал восстановления Б этих условиях равен—1,20 в, при навеске серы 1—2 г чувствительность составляет 1 10 %. [c.423]

    Исследовано полярографическое поведение 29 производных акридина [73] в спиртовом растворе при pH 4,48 (в ацетатном буферном растворе) и при pH 2,25 (в аммиачном буферном растворе). Установлено, что введение хлор-, метокси-, нитро- и феноксизаместителей в положении 2,6 и 9 акридина не оказывает заметного влияния на 1/2, исключение представляют производные акридина с алкиламиногруппой в положении 9, в ряду которых обнаружены сильные физиологически активные вещества, 1/2 первой ступени восстановления производных акридина зависят от pH. [c.196]

    Обычно образование коллоидных растворов осложняет ана лиз, ведет к необходимости выполнения ряда дополнительных операций и даже — к ошибкам. Но иногда способность некоторых веществ давать коллоидные растворы полезна для анализа. Так, наличие в растворе ионов РОГ сильно затрудняет ведение анализа. С ионом РОГ катионы И и HI групп, а также Mg"" образуют нерастворимые в воде и щелочах осадки. При осаждении катионов П1 группы в аммиачном буферном растворе наличие иона РОГ мешает отделению катионов П1 группы от П. Ион РО4 удаляют из исследуемого раствора при помощи мета-оловянной кислоты. Последняя образуется при действии концентрированной HNO3 на олово в виде объемистого студенистого осадка. Гель оловянной кислоты способен адсорбировать, на своей поверхности находящиеся в растворе ионы РОГ Процесс протекает по схеме  [c.366]

    Авторы рекомендуют этот метод для стандартизации растворов различных содей. Видра и Карлик [332] исследовали условия титрования ЭДТА ряда- солей как в буферных растворах, так и без них. В работе использовали аммиачный и боратный буферные растворы. Объектами исследования служили соли кальция, стронция, бария, магния, цинка, меди, кадмия, никеля, кобальта и марганца Предложены методы кондуктометрического определения катионов указанных металлов. Показана возможность обратного титрования комплексонов солями,металлов. Видра и Карлик изучали формы кривых титрования ЭДТА солей металлов без добавления буферных смесей и установили, что электропроводность раствора после точки эквивалентности может не только понижаться, но и оставаться постоянной или несколько увеличиваться. [c.230]


Смотреть страницы где упоминается термин Буферные ряды аммиачный: [c.328]    [c.349]    [c.77]    [c.152]    [c.155]    [c.115]    [c.349]    [c.116]   
Физическая и коллоидная химия (1964) -- [ c.98 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Буферная

Буферные аммиачная



© 2024 chem21.info Реклама на сайте