Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этиловые эфиры гидролиз

Рис. 210. Корреляционная зависимость g k k ст 1е(/С//Со) в реакции щелочного гидролиза этиловых эфиров замещенных бензойных кислот в водной среде Рис. 210. <a href="/info/1050561">Корреляционная зависимость</a> g k k ст 1е(/С//Со) в <a href="/info/313364">реакции щелочного гидролиза</a> <a href="/info/17842">этиловых эфиров</a> <a href="/info/1053502">замещенных бензойных кислот</a> в водной среде

Рис. 77. Синергистическая активация профлавином гидролиза этилового эфира М-бензоил-1-аргинина, катализируемого папаином [34], если концентрация активатора, М Рис. 77. <a href="/info/1781512">Синергистическая</a> активация профлавином гидролиза этилового эфира М-бензоил-1-аргинина, катализируемого папаином [34], если концентрация активатора, М
    Скорость гидролиза этого эфира в растворах кислот различной кониентрации подробно изучена [201]. Этиловый эфир бензолсульфокислоты гидролизуется медленнее, чем метиловый эфир [202]. Вероятно, это правило справедливо и для его высших гомологов. [c.358]

    Метиловые и этиловые эфиры слишком быстро гидролизуются. [c.179]

    Скорость гидролиза сложного эфира зависит от строения как ацильного, так и спиртового радикалов. При этом сложные эфиры омыляются тем быстрее, чем легче они образуются. Наименее устойчивыми являются сложные эфиры, полученные из кислот с высокой константой диссоциации. Муравьиноэтиловый эфир, метиловый и этиловый эфиры щавелевой кислоты гидролизуются при комнатной температуре. [c.166]

    Без катализаторов гидролиз многих эфиров протекает очень медленно, иногда в течение нескольких лет, хотя некоторые сложные эфиры, например метиловый и этиловый эфиры муравьиной кислоты, метиловый и этиловый эфиры щавелевой кислоты, эфиры а-окси- и низших а-аминокислот и др., гидролизуются очень быстро. Скорость реакции значительно увеличивается добавками [c.529]

    Этансульфокислота. В этом разделе приведены только реакции, не упомянутые при рассмотренип общих методов получения сульфокислот. Встряхивание диэтилсульфита с иодистым этилом [54] в щелочном растворе или просто гидролиз диэтилсульфита холодным раствором 20%-ной щелочи [87] ведет к образованию некоторого количества щелочной соли этансульфокислоты. Аналогичные. результаты дает действие иодистого этила на натриевую соль кислого этилового эфира сернистой кислоты. Последняя в присутствии солеи, например роданида натрия, претерпевает перегруппировку, превращаясь в натриевую соль этансульфокислоты [88]. Сернистокислый натрий может быть алкилирован [89] путем нагревания с натриевой солью этилсерной кислоты в концентрированном водном растворе до температуры 110—120° в течение 3 час.  [c.122]

    Метиловый эфир метансульфокислоты получается действием иодистого метила на диметилсульфит [54] при 115 . Он имеет т. кип. 202,7—203 при 748 мм и уд. вес ( ) 1,3206. Этиловый эфир метансульфокислоты может быть приготовлен [59а] из ангидрида метансульфокислоты и этилового спирта. Температура кипения его 85—86 при 10 мм другие физические свойства исследованы не были. Эфир легко гидролизуется при нагревании с водой. [c.117]


    Как впервые отметил Магнус [235, 236], действием серного ангидрида на этиловый спирт или этиловый эфир получается этионовая кислота, которая при гидролизе переходит в изэтионовую кислоту  [c.145]

    При исследовании гидролиза этилового эфира п-бромбензолсульфокислоты в ацетоновом растворе [206], к которому было добавлено небольшое количество воды, замечено, что скорость гидролиза (определяемая путем титрования раствора) в присутствии галоидоводородных кислот и их солей значительно меньше, чем с чистой водой. Оказалось, что эта кажущаяся медленность гидролиза объясняется побочными реакциями, ведущими к образований галоидоалкилов. С 1 н соляной кислотой образование хлористого этила идет в три раза скорее, чем образование этилового спирта. С учетом этих побочных реакций скорость гидролиза в кислых растворах несколько больше, чем в чистых водных. [c.359]

    Этиловый спирт. Этилен легко поглощается 98—100%-ной серной кислотой при температуре 75—80° С. Более высокие температуры вызывают нежелательные окислительно-восстановительные реакции, а высокая концентрация кислоты вызывает потерю этилена, связанную с превращением его в этионовую кислоту и карбил-сульфат [239, 240]. Образование полимеров в данном случае значения не имеет. Образуются как моно-, так и диэтил сульфаты после разбавления водой и нагревания происходит энергичный гидролиз. Вторичная реакция между нейтральным эфиром и спиртом ведет к образованию этилового эфира [c.577]

    Образование моноэтилсульфата из этилена и гидролиз последнего в этиловый спирт описаны Фарадеем в 1827 г., но первое успешное промышленное применение эта реакция получила лишь столетием позже, когда производство этилена и его выделение фракционной перегонкой стали достаточно совершенными. В 1897 г. пытались получить этиловый эфир из этилена нефтяного газа, полученного при помощи крекинга, с применением сорной кислоты в Ричмонде (штат Вцргиния) и в Бруклине (штат Нью-Йорк) [19]. [c.353]

    Алкилметионовые кислоты. Большинство гомологов метионовой кислоты получено алкилированием эфира или амида этой кислоты и последующим гидролизом. Этан-1,1-дисульфокислота является, однако, исключением, так как чаще всего ее получают окислением тиальдина [469], перманганатом калия или цинка. Хлористый этилиден при взаимодействии с сернистокислым аммонием не дает заметных количеств соли дисульфокислоты [469]. Иодистый этил с серебряной солью этан-1,1-дисульфокислоты образует этиловый эфир этой кислоты [470]. Последний получен также алкилированием натриевого производного этилового эфира метионовой кислоты иодистым метилом [4506] в бензольном растворе. Эфир описан в литературе как масло, обладающее характерным запахом. Он не растворим в воде и на -холоду в водном растворе щелочей, но при взаимодействии с этилатом натрия в этиловом эфире образует осадок натриевого нроизводного  [c.184]

    Смесь нафтеновых кислот и фенолов, по Гурвичу, может быть )азделена переведением кислот в их метиловые или этиловые эфиры. 11сли такую смесь извлекать на холоду слабой щелочью, фенолы могут быть выделены из общей смеси в виде фенолятов, уже свободных от кислот. Это, однако, способ, не исчерпывающий вопрос-а о разделении смеси указанных веществ, потому что, во-первых, нельзя думать, что скорость и полнота этерификации нафтеновых и вообще нефтяных кислот одинаково велики для всех индивидов их, а во-вторых, нельзя также поручиться и за то, что нефтяные фенолы одинаково устойчивы в смысле гидролиза водой при экстрагировании слабой щелочью. Но приблизительное разделение возможно.  [c.56]

    Раствор, содержащий этилсерную кислоту, диэтилсульфат и непрореагн-ровавшую серную кислоту, из нижней части реактора 1 поступает в холодильник 2, там охлаждается до 50°С, дросселируется до 0.7—0,9 МПа и направляется в гидролизер 3, где смешивается в инжекторе с водой, отделенной при ректификации этилового спирта. Гидролиз этилсульфатов проводится при 0,2 МПа и 95—100 °С. В результате снижения давления и повышения температуры из раствора выделяются газы, которые вместе с парами диэтилового эфира выводятся из верхней части гидролизера 3 и присоединяются к потоку газа из абсорбера 1. [c.223]

    При этой реакции получены выходы эфира 40 и ЗО /о от теории. Эфир представляет собой бесцветную жидкость с т. кип. 24° при 12 мм и 113° при 752 мм уд. вес 1,310 при комнатной темпера-туре>>. Свободная фторсульфоновая кислота не разъедает стекло, тогда как ее эфиры оказывают заметное корродирующее действие. Этиловый эфир фторсульфоновой кислоты не смешивается с водой, но очень легко с ней реагирует, образуя растворимые в воде продукты гидролиза. Кажется странным, что этот эфир не вступает в реакцию с абсолютным этиловым сииртом, хотя последний энергично реагирует с этиловым эфиром хлорсульфоновой кислоты. Так как метиловый эфир фторсульфоновой кислоты в щелочном растворе алкилнрует фенолы, несомненно, что ее этиловый эфир будет действовать таким же образом, но эта реакция не изучена. [c.38]


    Этиловый эфир хлорсульфоновой кислоты действием серного ангидрида переводится в сульфосоединение [207а], которое легко гидролизуется в изэтионовую кислоту  [c.43]

    Скорость гидролиза изоамилсульфата натрия в кислом растворе [231 ] примерно вдвое меньше скорости гидролиза этилового эфира серной кислоты. При нагревании изоамилсульфата калия с азотнокислым калием [232] в значительных количествах образуется нитрит. [c.45]

    Этансульфохлорид медленно гидролизуется водой [95]. При взаимодействии с горячим этиловы м спиртом наряду с этиловым эфиром этансульфокислоты образуются хлористый этил и двуокись серы [96]. Такое течение реакции необычно для сульфохлорида этого типа. Аналогичное разложение претерпевает продукт присоедш нения к этансульфохлориду хлористого алюминия [41], образуя в качестве побочных продуктов хлористый водород и смолу. При нагревании этансульфохлорида с 70%-ным раствором фтористого калия [48] с выходом 67% получается соответствующий фторид с т. кип. 134—135°. Это соединение не вступает в реакцию с пиридином даже при стоянии в течение нескольких недель. [c.123]

    Из 1,3 кг этилового эфира и 1,5 кг серного ангидрида получено 600 г диэтилсульфата. Увеличение количества серного ангидрида до 2,1 кг привело к образованию 750 г изэтионовой кислоты. Из 100 г диэтилсульфата п 88 г серного ангидрида получено 5,4 г метионата бария СН2( 0з),Ва. Наилучшин метод получения изэтионовой кислоты состоит в сульфировании сухого этилового эфира газообразным серным ангидридом при 0°, после чего реакционная смесь обрабатывается водой для удаления диэтилсульфата (диэтилсульфат можно подвергнуть последующему сульфированию) и этионовая кислота гидролизуется кинячением водного раствора. [c.146]

    Нагревание этилового эфира 1-нафталинсульфокислоты с водой до 150° приводит к полному гидролизу с образованием нафталина, серной кислоты и спирта [207а]. Обработка -хлорэтилового эфира бензолсульфокислоты 0,1 н раствором едкого кали [2076] показывает, что сульфогруппа гидролизуется в три раза скорее, чем атом хлора, но в случае 8, р -дихлоризопропирового эфира бензолсульфокислоты атомы хлора отщепляются с большей скоростью, чем сульфогруппа. Этот эфир гидролизуется, однако, очень медленно даже в кипящем 30%-ном растворе едкого натра. [c.360]

    Ангидрид этионовой кислоты получен также в качестве первичного продукта [241] при взаимодействии серного ангидрида с этиловым сииртом. Для проведения сульфированпя олефинов и спиртов с цепью приготовления изэтионовой кислоты и ее гомологов запатентован [242] в качестве растворителя жидкий сернистый ангидрид. Этионовая кислота получается в небольших количествах [243] гидролизом продукта дальнейшего сульфирования этилового эфира хлорсульфоновой кислоты. Этот продукт образуется в условиях присоединения хлорсульфоновой кислоты к этилену наряду с ее этиловым эфиром, являющимся основным продуктом реакции. [c.146]

    Сульфирование эфиров нафтолов. Как при комнатной температуре [673], так и при 100° серная кислота превращает 1-нафтил-этиловый эфир [674] в 4-сульфокислоту. При кристаллизации последней из воды следует соблюдать осторожность, так как при 75° идет уже заметный гидролиз. 2-Нафтилметиловый эфир в сероуглеродном растворе дает с хлорсульфоновой кислотой [675] смесь [c.104]

    При действии водного раствора аммиака на этиловый эфир бензолсульфокислоты получаются главным образом продукты гидролиза [203], а также небольшие количества бензолсульфамина [c.358]

    Если галоидалкил образуется исключительно по реакции (4), то количество образовавшегося углеводорода должно быть по меньшей мере равно количеству галоидалкила, что не согласуется с результатами, полученными в ряде реакций, в которых на моль магнийорганического соединения был взят лишь 1 моль эфира. Так, эфир п-толуолсульфокислоты с этиллактатом не дает с маг-ни11бромфенилом этилового эфира а-фенилпропионовой кислоты, который должен был бы образоваться, по вышеизложенной теории, вместе с этиловым эфиром а-бромпропионовой кислоты, и вообще магнийгалоидалкилы [231, 232] не дают в этих условиях углеводородов в количествах, допускающих их выделение. Присутствие в продуктах гидролиза углеводорода, образовавшегося при гидролизе магнийорганического соединения, можно объяснить тем, что часть реактива не вступила в реакцию, или продукт реакции, полученный по уравнению (2), подвергся гидролизу  [c.368]

    Если же желательно увеличить образопанпе эфира, то время пребывания смеси алкилсульфатов п гидролизере удлиняют, одновременно вводя в пего этиловый сннрт. Чтобы получить ночтп исключительно одип эфир, гидролиз ведут 3 часа прн 120°. [c.451]

    В общем случае это достигается этерификацией карбоксильной группы, подлежащей защите. Для получения метилового или этилового эфира обрабатывают аминокислоту метанолом или этанолом, насыщенным НС1 (этерификация по Фищеру). Однако обычно предпочитают эфиры, гидролиз которых легко провести в мягких условиях. Хотя эфиры омыляются основаниями гораздо легче, чем пептиды (поскольку алкоксиды — лучщие уходящие группы), используемые для этого щелочные условия нельзя применять для деблокирования полипептидов. Использование бензи-ловых эфиров позволяет удалять защитные группы при нейтральных условиях с помощью каталитического гидрирования. Бензи-ловые эфиры синтезируют из кислоты и бензилового спирта в присутствии кислоты или тиоиилхлорида (который переводит спирт в сульфохлорид, и уже последний замещается кислотой), [c.77]

    Проведите гидролиз соединений, полученных взаимодействием этилового эфира муравьиной кислоты с бромистым этилмагнием, иодистым изопропилмагнием, бромистым изобутилмагнием. [c.76]

    Со(Н) и Си(П) могут инициирвать гидролиз этиловых эфиров глицина при pH 7—8, 25°С, т. е. в условиях, при которых последние обычно стабильны. Комплексообразование происходит между ионом металла и эфиром аминокислоты с образованием пятичленного хелата. Затем, как результат координации нона металла с аминной или эфирной группами аминокислоты, происходит уже и каталитическая реакция. В любом случае ион металла может увеличивать полярность карбонильной группы, вызывая тем самым атаку ОН-. Скорость гидролиза увеличивается с возрастанием pH, что говорит об участии в механизме гидроксил-иона. С термодинамической точки зрения гидролиз, по-видимому, происходит из-за того, что образующийся карбоксильный анион дает [c.352]

    Гидролиз полученного продукта лодтве.рД Ил его строение. Из 1,42 г пропионового ацилаля получено 0,49 г (48,8%) этилового эфира гидробензоина с т. пл. 49—5Г°, доказанного плавлением смешанной пробы. Кроме того, выделен ацетальдегид в виде его 2,4-динитрофенилгидразона. [c.33]

Рис. 41. Зависимость 1д(А/йо) для щелочного гидролиза этиловых эфиров замещенных (зеизойных кислот при 25° С в 85%-НОМ этаноле 01 К/Ка) бензойных кислот при 25° С в воде (по данным Эванса, Гордона и Уотсона) Рис. 41. Зависимость 1д(А/йо) для щелочного гидролиза этиловых эфиров замещенных (зеизойных кислот при 25° С в 85%-НОМ этаноле 01 К/Ка) <a href="/info/5301">бензойных кислот</a> при 25° С в воде (по данным Эванса, Гордона и Уотсона)
    Большое значение при щелочном гидролизе приобретает Также 6 4- на атакуемом атоме углерода. Несмотря на то что ё молекулах этиловых эфиров трихлоруксусной и пивалнновой кислот пространственные затруднения почти одинаковы, эфир трихлоруксусной кислоты гидролизуется растворами щелочей в 8-10 раз быстрее, чем эфир пивалиновой кислоты. [c.176]

    Н 1пишите реакцию конденсации натриймалоново-го эфира с этиловым эфиром а-бромиэовалериановой кислоты. Полученное соединение подвергните гидролизу с последующим нагреванием. [c.85]

Рис. 98. Определение индивидуальных констант скоростей гидролиза этилового эфира -тирозина, катализируемого а-химотрипсинои , в присутствии дополнительного нуклеофильного агента (1,4-бутандиола) (по данным А. А. Клёсова), если концентрация 1,4-бутандиола, М Рис. 98. Определение <a href="/info/1589294">индивидуальных констант скоростей</a> гидролиза этилового эфира -тирозина, катализируемого а-химотрипсинои , в <a href="/info/695111">присутствии дополнительного</a> <a href="/info/101801">нуклеофильного агента</a> (1,4-бутандиола) (по данным А. А. Клёсова), если концентрация 1,4-бутандиола, М
Рис. 106. Определение констант ионизации ионогенных групп активного центра клострипаина, контролирующих реакцию гидролиза этилового эфира Ы-бензоил-1-арги-нина [45] Рис. 106. <a href="/info/426731">Определение констант ионизации</a> ионогенных <a href="/info/1376395">групп активного центра</a> <a href="/info/489807">клострипаина</a>, <a href="/info/96535">контролирующих реакцию</a> гидролиза этилового эфира Ы-бензоил-1-арги-нина [45]

Смотреть страницы где упоминается термин Этиловые эфиры гидролиз: [c.415]    [c.516]    [c.32]    [c.35]    [c.39]    [c.41]    [c.159]    [c.542]    [c.276]    [c.386]    [c.34]   
Пептиды Том 2 (1969) -- [ c.91 , c.93 ]




ПОИСК







© 2025 chem21.info Реклама на сайте