Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен влияние

    Результаты при Рг = 5с. Уравнения (6.3.14) — (6.3.17) показывают, что при P = Q выполняется равенство ф ц) = С ц). Следовательно, необходимо решать систему, состоящую из уравнения (6.3.14) и одного из уравнений (6.3.15) или (6.3.16). Член с выталкивающей силой, входящий в уравнение (6.3.14), будет содержать либо ф, либо С. Результаты получаются точно такими же, как рассмотренные ранее решения задачи о теплообмене. Влияние совместного действия тепло- и массообмена заключается в том, что Ь(х) и с х) зависят от суммы Огд - -+ Стх, с- Скорости переноса при Р г = 5с определяются по формулам (6.3.20) и (6.3.21) при P = Q = 1, в которые входят [— (0)] и М-, значения —ф 0) указаны в табл. 3.4.1. [c.352]


    Определение коэффициента теплопередачи, являющегося коэффициентом скорости теплового процесса, представляет наибольшие трудности при расчете поверхности теплообмена. Этот коэффициент зависит от характера и скорости движения сред, а также от условий, в которых протекает теплообмен. Влияние окружающей среды выражается коэффициентами теплоотдачи а] и аг (количество теплоты, которое проходит за единицу времени [c.224]

    Экспериментальное определение теплоемкостей является настолько трудоемким процессом, что невозможно рассчитывать на полный охват изучением в этом отношении всех веществ и систем и в широком интервале температур. С другой стороны, эксперимент требует от исследователя не только внимательного отношения к возможному влиянию различных факторов и их устранению, но и тщательного соблюдения идентичности производимых измерений, так как при калориметрических определениях возникают ошибки и неточности, обусловленные главным образом теплообменом прибора с внешней стороны. [c.42]

    При теплообмене, например, в топке между раскаленным слоем топлива на топочной решетке и кипятильными трубками парового котла имеются различные газообразные или твердые частицы. В этом случае тепло, излучаемое слоем угля на топочной решетке, может быть в большей или меньшей степени поглощено этими частицами. В свою очередь, водяной пар, окись углерода, двуокись углерода и особенно взвешенные частицы топлива и золы имеют собственное лучеиспускание. Это оказывает на общее явление теплообмена лучеиспусканием большое влияние. [c.21]

    При вынужденном движении теплоносителя коэффициент теплоотдачи от поверхности теплообмена к жидкости, которая течет с заданной скоростью, определяется критериями Рейнольдса и Прандтля. Критерий Грасгофа может быть введен только в случаях, когда на теплообмен заметное влияние оказывает естественная конвекция. [c.42]

    В формуле (70) величина постоянной С зависит от направления теплового потока. В обычном промышленном теплообменном оборудовании ламинарный режим течения имеет место только в случае применения весьма вязких жидкостей. Вязкость таких жидкостей обычно сильно зависит от температуры. Вследствие этого в случае охлаждения слой жидкости, примыкающий к стенке и имеющий более низкую температуру, будет значительно более вязким и значительно более толстым, чем при нагреве, когда именно этот слой имеет наиболее высокую температуру. Следует иметь в виду, что примыкающий в стенке слой жидкости оказывает определяющее влияние на величину термического сопротивления, так как в непосредственной близости к стенке теплопередача может совершаться только благодаря теплопроводности. [c.57]


    Предположим, что мы рассматриваем две плоскости одинаковой величины, размеры которых велики по сравнению с расстоянием между ними, и что между телами нет никакой среды, которая оказывала бы влияние на луч истый теплообмен между ими. Количество тепла, которое излучается от поверхности более теплого тела к поверхности более холодного тела, определяется уравняем [c.131]

    Еще не получено достаточно точных формул, которые позволяли бы рассчитывать теплообмен во всех случаях. Поэтому необходимо проведение дальнейших экспериментальных работ I изыски-вание новых теоретических решений, которые и с учетом упрощающих предпосылок достаточно точно отражали бы физическую сущность процесса. При этом очень часто возможным бывает нахождение лишь частных решений практических задач, так как учет ряда факторов, оказывающих влияние на процесс, находится вне пределов наших возможностей. Вкратце упомянем о них. [c.164]

    Например, в трубчатых скребковых теплообменных аппаратах поверхность постоянно очищается, т. е. устраняется отрицательное влияние повышенной адгезии, и, кроме того, возможно приложение высоких сдвиговых напряжений, снижающих вязкость. На рис. XI-2 показан двухкорпусный скребковый аппарат с поверхностью теплообмена 3,5 м . [c.99]

    В контактных реакторах чаще всего процесс проходит в кинетической или внутридиффузионной областях. Учитывая большое влияние температуры на скорость реакции в этих областях, можно считать, что рещающее значение для увеличения масштаба имеет характер процесса теплопереноса. Этот процесс складывается из теплообмена в жидкости (газе) и в зернах катализатора, теплоотдачи на границе фаз и до стенки аппарата, конвекции в потоке реагентов при высоких температурах следует учитывать также теплообмен лучеиспусканием. [c.466]

    Приближенные модели переноса. При изучении экстракции и абсорбции расчет процессов массо- и теплообмена часто проводят, исходя из предположения, что гидродинамика существенно влияет на массо- и теплоперенос, в то время как тепловые и диффузионные потоки слабо меняют характер течения. Это облегчает задачу, но, к сожалению, не избавляет от математических трудностей, связанных с учетом сложных гидродинамических условий, в которых протекают массо- и теплообменные процессы. Развитие теории массо- и теплопереноса щло по пути учета влияния гидродинамических факторов с помощью построения различных приближенных моделей. [c.172]

    Наряду с традиционной системой внешнего охлаждения рабочих камер компрессоров и поршневых двигателей, в ряде случаев применяют испарительное охлаждение при непосредственном контакте рабочего тела с мелкодисперсной жидкостью. При этом повышается теплообмен, увеличивается количество отводимого тепла, уменьшается количество отложений, что оказывает существенное влияние на повышение экономичности и эксплуатационной надежности компрессорных машин и тепловых двигателей. Это подтверждается результатами опытно-промышленных исследований, выполненных различными организациями и авторами данной книги. [c.4]

    Выбранные размеры должны были позволить исследовать о)гая-" ние скорости потока на скорость реакции и теплообмен в трех режимах— ламинарном, турбулентном и промежуточном. В качестве катализатора применялась медь, нанесенная на поверхность носителя. Диффузия в порах катализатора влияния на процесс не оказывала. После ориентировочного определения размеров аппарата следовало проверить, достаточен ли выбранный объем слоя и не может ли произойти нежелательный рост температуры. [c.179]

    Существование гистерезиса объясняется теплопередачей между нагретыми частицами катализатора в реакторе и менее горячим реакционным потоком. Когда в реакторе происходит теплообмен за счет радиации в начальной части слоя катализатора (горячий слой катализатора и холодный, еще не вступивший в химическую реакцию, газ), в реакторе [3, 4] возможно существование трех устойчивых стационарных состояний, разделенных двумя неустойчивыми. При этом влияние инертных наполнителей, уменьшающих температурный градиент между слоем и газом, расио-ложенных перед слоем катализатора и после него, рассмотрено в [4, 5]. Условия, при которых возможно зажигание, получены, например, в [6]. Анализ этих условий показывает, что для гетерогенных каталитических реакторов зажигание происходит тем эффективнее, чем длиннее слой. Следует поэтому предположить, что имеется предельное значение длины слоя катализатора, при превышении которой устойчивы лишь зажженные стационарные [c.284]

    Основной недостаток рассматриваемых моделей (не затрагивая искусственных приемов и математических погрешностей ),. состоит в игнорировании влияния на теплообмен теплофизических свойств твердого материала (в частности, его теплоемкости). Последующее включение параметров, характеризующих эти свойства, в эмпирические формулы пе достигает цели самые удачные из этих формул (например. Лева ) расходятся с опытными данными в 4—5 и более раз. [c.419]


Рис. Х-18. Влияние горизонтального ( г) и вертикального ( в) шагов на теплообмен с горизонтальными трубами (система кварцевый песок — воздух аппарат сечением 380 х 380 мм) Рис. Х-18. <a href="/info/1449731">Влияние горизонтального</a> ( г) и вертикального ( в) шагов на теплообмен с <a href="/info/741643">горизонтальными трубами</a> (<a href="/info/1752113">система кварцевый</a> песок — <a href="/info/89435">воздух аппарат</a> сечением 380 х 380 мм)
    О влиянии на теплообмен прочих факторов [c.443]

    При анализе влияния высоты слоя Н на теплообмен необходимо исключить балансовые коэффициенты теплоотдачи, антибатно изменяющиеся с Н. Зависимость истинных hp от Н возможна как результат отклонения расчетной разности температур от реальной. Не исключены также случаи, когда эта зависимость связана с изменением качества псевдоожижения по высоте слоя. [c.462]

    Характер потоков около вставок Локальные коэффициенты теплоотдачи Влияние вставок на пузыри Теплообмен [c.523]

    Проточные реакторы. Большинство современных промышленных процессов проводится в непрерывно действующих проточных реакторах. Такой реактор представляет собой открытую систему, взаимодействующую с внешней средой в аппарат непрерывно подаются исходные вещества и отводятся продукты реакции и выделяющееся тепло. На показатели работы реактора влияют, наряду с химической кинетикой и макрокинетикой процесса, новые, специфические факторы конвективный поток реагентов и теплообмен с внешней средой. Расчет и теоретический анализ работы реактора с учетом взаимодействия и взаимного влияния всех этих факторов — далеко не простое дело. Число параметров и переменных, необходимых для точного расчета, в практически важных случаях может быть чрезвычайно большим и превосходить возможности даже самых быстродействующих вычислительных машин. Дополнительную сложность вносят типичные для крупномасштабных систем явления статистической неупорядоченности и случайного разброса характеристик процесса. Эти явления нельзя рассматривать как внешнюю, досадную помеху они связаны с самой природой процесса и должны обязательно приниматься во внимание при анализе его работы. Непременным залогом успеха при расчете промышленных химических реакторов является предварительный анализ основных факторов, влияющих на процесс в данных условиях. Только таким путем можно выделить основные связи из сложной и запутанной картины взаимодействия различных процессов переноса и химической реакции, не отягощая расчет излишними и зачастую обманчивыми уточнениями и в то же время не упуская из виду существенных, хотя, может быть, и трудных для анализа, действующих факторов. [c.203]

    На теплообмен конвекций существенное влияние оказывает режим работы печи. Режимы бывают следующие  [c.27]

    Когда происходит теплообмен между однофазными потокаш (неиснаряющиеся жидкости или неконденсирующиеся газы), отступление от этого принцппа, ради удобства трубной обвязки теплообменника, почти не сказывается на эффективности теплопередачи, так как среды физически однородны и влияние конвекции на тенло-съем незначительно. Если же теплообмен связан с исиарением или конденсацией, как это имеет место на установках гидроочпстки, принцип направленной конвекции должен соблюдаться обязательно. В противном случае силы естественной конвекции будут направлены против движения потока (рис. 19). Из-за резкого различия физи- [c.86]

    Значительное число исследований теплообмена в зернистом слое выполнено в нестационарном режиме нагревания (охлаждения) слоя. Выше подробно анализировались возможные погрешности этих методов исследования. В работах [106, 107] при проведении опытов в режиме прогрева слоя температуру газа на выходе измеряли только в одной точке на оси аппарата, что также могло привести к ошибкам в определении средних коэффициентов теплоотдачи. Однако основную роль в отклонении полученных зависимостей вниз при Кеэ < 100 (рис. IV. 19, в) играет продольная теплопроводность, не учтенная в методике обработки опытных данных. Пересчет данных [106] по формуле (IV. 67) при 1оАг = 15 для стальных шаров и Хо/Кг = 5 для песка привел к хорошему совпадению опытных точек с зависимостью (IV. 71). Аналогичная коррекция формул, полученных в [107], показана на рис. IV. 19, б. Таким образом, занижение данных по теплообмену в зернистом слое при Кеэ < 100 связано с влиянием продольной теплопроводности, неравномерности распределения скоростей и возможных погрешностей экспериментов, а не с особенностями закономерностей процессов переноса в переходной области течения газа [106]. [c.160]

    Данные по теплообмену в зернистом слое при Кбэ = 0,05—10 и Рг 1 собраны в работе [118] на рис. IV. 20 они показаны в виде области экспериментальных точек. Большинство из них получено по результатам измерений Ь методом создания встречных одномерных потоков газа и теплоты [29]. Отличие полученных значений кг отХоэ при Неэ < 1 интерпретируется как результат влияния межфазного теплообмена, и на основе видимых значений ./ определяются коэффициенты теплоотдачи. В работе [119] определяли поля температур на выходе из трубы с зернистым слоем, обогреваемой паром. Коэффициенты теплоотдачи находили путем сравнения этих полей с [c.161]

    Теплообмен при естественной конвекции происходит значигельно чаще и играет более важную роль, чем это. можно было бы предположить. Сюда относится не только вся область отопительной техники, но и все так называемые потери в окружающую среду трубопроводов, теплообменных сосудов, содержащих горячие жидкости, обмуровки котлов, машин и т. д. Во всех указанных случаях, конечно, может более или менее сказаться влияние излучения, которое должно быть отдельно учтено в расчетах. Теплообменом при естественной конвекции следует также считать нагрев жидкости в сосудах до наступления кипения, если жидкость при этом не перемешивают. Примером в данно.м случае. могут служить варочные котлы на пизоваренных заводах и т. д. [c.34]

    Очень большое влияние на ход химического превращения оказывают условия теплообмена. Если температура практически одинакова во всем реакционном пространстве и равна температуре потока питания, то реактор называется изотермическим. Его проти положностью будет адиабатический реактор с практически полным отсутствием теплообмена между реакционным пространст- вом и окружающей средой. Температура реагирующей смеси в этом случае зависит непосредственно от теплового эффекта реакции. Умеренный теплообмен между реакционным пространством и окружающей его средой характерен для неизотермических реакторов. [c.290]

    Нанесены также кривые изменения температуры по оси реактора и в теплообменной рубашке. На рис. П-25 показапа зависимость степени превращения в слое от начальной температуры газа при постоянной массовой скорости потока О = 63 кгЦм -ч). На рис. П-26 показано влияние мольного отношения [c.178]

    Законы переноса вещества и тепла идентичны. Из-за развитой внутренней поверхности имеет место интенсивный теплообмен между обеими фазами, приводящий к гомогенизации системы. Поэтому становится вполне приемлемым использование закона Фурье q = — Я-эф grad Т, определяющего плотность теплового потока q в зависимости от градиента температуры и величины коэффициента эффективной теплопроводности зерна катализатора Хэф. Экспериментальные значения Хдф, найденные различными авторами, например [73], свидетельствуют о том, что на теплопроводность пористых зерен относительно слабо влияют теплофизические свойства твердого материала. Большое влияние оказывает теплопроводность газовой фазы. Однако решающее значение на величину зф оказывают геометрические характеристики структуры, особенно величины площадей наиболее узких мест или окрестности областей спекания, сращивания, склеивания частиц друг с другом. Для приближенной оценки величины Хэф можно рекомендовать монографию [74], в которой представлен значительный объем экспериментальных данных по дисперсным материалам. [c.157]

    В противоположность теплообмену между с.тоем и стенкой, в случае теплообмена между ожижающим агентом и твердыми частицами влиянием их теплоемкости практически можно пренебречь. Теплообмен со стенкой определяется нагревом частиц , которые подходят к стенке, охлаждаются и уходят от нее. В нро-тпвоположпость этому при теплообмене между газом и твердыми частицами не происходит изменения температуры последних — перенос тепла лимитируется в основном термическим сопротивлением пограничной пленки вокруг каждой частицы. Следовательно, в ЭТ0Л1 случае теплоемкость частиц не монгет играть существенной роли , и правило пересчета коэффициентов тепло-и массообмена выражается следующим образом  [c.394]

    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    Из рис. Х-2, а видно, что в рассматриваемом интервале значений Аг удовлетворительно согласуются формулы, отвечающие кривым 3—12. Расчетные значения Numax отклоняются от некоторого среднего на (10—20)%, а показатель степени при числе Архимеда (если постулировать степенную зависимость Numai от А г) колеблется в пределах 0,2—0,25. Значительное расхождение остальных формул, как показал анализ большей частью объясняется особыми условиями экспериментов (теплообмен с тонкими проволоками низкие слои, соизмеримые с зоной влияния распределительной решетки жидкостное, т. е. однородное псевдо-ои ижение и т. д.). [c.415]

    Величины Rr и Ew базируются на эффективных теплопроводностях, существенно зависящих от порозности пакета и в пристенной зоне соответственно. Влияние на теплообмен порозности неподвижного слоя е , близкоц к бд и подтверждено экспериментально [c.422]

Рис. Х-19. Влияние горизонтального ( г) и вертикального (зв) шага на теплообмен с двухрядным шахматньш пучком труб [кварцевый песок ( е = 0,35. мм) — воздух аппарат сечением 380 хЗВО мм]. Рис. Х-19. <a href="/info/1449731">Влияние горизонтального</a> ( г) и вертикального (зв) шага на теплообмен с двухрядным шахматньш <a href="/info/131295">пучком труб</a> [<a href="/info/478668">кварцевый песок</a> ( е = 0,35. мм) — <a href="/info/89435">воздух аппарат</a> сечением 380 хЗВО мм].
    Влияние на величину h геометрических характеристик простой перфорированной решетки иллюстрируется на рис. Х-21. Мы видим, что коэффициент теплоотдачи быстро возрастает со скоростью и при использовании решеток с малым живым сечением ф . Аналогичные данные получены при исследовании теплоотдачи к трубным пучкам в случае использования решёток с долей живого сечения 1 и 4% (диаметр отверстий в обеих решетках — 1 мм). Фрайман и Гельперин показали, что при теплообмене с наружной цилиндрической стенкой величина h понижается с ростом при увеличении как числа отверстий в решетке, так и их размера. [c.445]

    Кроме того, вряд ли правомерно связывать изменение интенсивности теплообмена непосредственно с ориентацией змеевйка, так как маловероятно, что теплообменные характеристики слоя в различных точках его объема идентичны и строго постоянны во времени. По этой причине при изучении влияния ориентации поверхности в слое более правильно измерять локальные коэффициенты теплоотдачи. Из таких работ может быть сделан общий вывод о том, что в широком диапазоне скоростей ожижающего агента теплообмен несколько интенсивнее к вертикальным трубам, нежели к горизонтальным. Однако вблизи начала псевдоожижения горизонтальная ориентация труб столь же благо-Ариятна, как и вертикальная, поскольку низкие коэффициенты [c.529]

    Результаты обширного исследования теплообмена между псевдоожиженным слоем и пучками труб приведены в главе X. Особый интерес представляет вывод авторов о том, что горизонтальный шаг влияет на теплообмен значительно сильнее вертикального, обусловливая тот или иной характёр развития пузырей. Очевидно, существенную роль играет первоначальное разрушение пузырей нижними трубами пучка. При изучении теплообменных характеристик горизонтальных коридорных пучков труб было установлено что нижние (первые по ходу газа) трубы обнаруживают меньшую интенсивность теплообмена, нежели расположенные над ними . Этот факт еще раз подтверждает, что разрушение газовых пузырей нижними трубами оказывает большое влияние на теплообменные характеристики всего трубного пучка. [c.530]

    Внешняя массо- и теплопередача. Помимо процессов диффузии и теплопередачи внутри пористой частицы, существенное влияние на макроскопическую скорость каталитической реакции может оказывать массо- и теплообмен между внешней поверхностью частицы и омывающим ее потоком. Гетерогенно-каталитический процесс всегда проводится в условиях интенсивного движения реагирующей смеси при этом в основной части ( ядре ) потока молекулярная диффузия играет пренебрежимо малую роль по сравнению с конвекцией, благодаря которой происходит выравнивание состава и температуры смеси. Y твердой поверхности скорость потока обращается, однако, в нуль поэтому вблизи поверхности Ейзренос вещества будет определяться молекулярной диффузией реагентов. В первых работах по диффузионной кинетике гетерогенных реакций, принадлежащих Нернсту [11 ], принималось, что вблизи поверхности существует слой неподвижной жидкости толщиной б и диффузия через этот слой ли- [c.102]


Смотреть страницы где упоминается термин Теплообмен влияние: [c.116]    [c.120]    [c.435]    [c.437]    [c.437]    [c.442]    [c.444]    [c.445]    [c.245]   
Перемешивание в химической промышленности (1963) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте