Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость активности и энергиями связей

Рис. 27. Зависимость между энергией связи кислород — катализатор qs, ккал) и удельной каталитической активностью веществ в реакции окисления пропилена [19] данные об активности взяты из [35]. Рис. 27. Зависимость <a href="/info/764423">между энергией связи</a> кислород — катализатор qs, ккал) и <a href="/info/362152">удельной каталитической активностью</a> веществ в <a href="/info/6966">реакции окисления</a> пропилена [19] данные об активности взяты из [35].

    При определении энергии промежуточного взаимодействия более плодотворным оказался подход с позиции локального взаимодействия. На этом пути достигнуты определенные успехи для отдельных групп реакций. В первую очередь надо упомянуть зависимость активности от кислотности в кислотном катализе, от энергии связи кислорода для многих реакций окисления, энергии связи водорода для процессов гидрогенизации и др. Число таких частных обобщений несомненно будет быстро возрастать по мере расширения экспериментальных возможностей измерения энергий связи реагирующих веществ с катализатором. Для того чтобы эти зависимости превратились в закономерности подбора катализаторов, они должны быть развиты в направлении выявления функциональной зависимости упомянутых энергий связи от состава и электронной структуры компонентов катализатора. Развитие расчетных и экспериментальных методов позволяет ожидать быстрый прогресс в этом направлении. [c.450]

    Наблюдаемую особенность изменения каталитической активности в процессе регенерации в зависимости от природы оксида авторы объясняют влиянием энергии связи кислорода катализатора на скорость выгорания углеродистых отложений [104]. Энергия связи кислорода в оксиде железа(П1) значительно выше энергии связи для оксидов кобальта и никеля, значения которых близки. Установлено [104, 105], что при низких температурах регенерации процесс лимитируется отрывом кислорода от решетки оксида, и в уравнении, связывающем энергию активации процесса с энергией связи кислорода катализатора, Е = Ео щ, будет знак плюс. В этом случае снижение энергии связи кислорода должно уменьшать энергию активации процесса в целом и увеличивать скорость выгорания углерода. Следовательно, при 450 С наиболее медленно выгорание углерода протекает на оксиде железа(П1), так как кислород в данном случае связан наиболее прочно. [c.41]

    Для синтеза ЫНз (кривая 3), где лимитирующим этапом является хемосорбция азота, максимум каталитической активности смещен в сторону Ре (З Чх ). Удельная каталитическая активность никеля в этой реакции на 3 порядка ниже железа. Видимо, энергия связи азота с поверхностью железа наиболее близка к оптимальной при синтезе аммиака. Аналогичные зависимости имеются и в других периодах [4]. [c.34]

    Стабильные и радиоактивные изотопы. В настоящее время известно около 280 стабильных изотопов, принадлежащих 81 природному элементу, и более 1500 радиоактивных изотопов, 107 при родных и синтезированных элементов. При этом у элементов с нечетными I не более двух стабильных изотопов. Число нейтронов в таких атомных ядрах, как правило, четное. Большинство элементов с четным 2 характеризуется несколькими стабильными изотопами, из которых не более двух с нечетными А. Наибольшее число изотопов имеют олово (10), ксенон (9), кадмий (8) и теллур (9). У многих элементов по 7 стабильных изотопов. Такой широкий набор стабильных изотопов у различных элементов связан со сложной зависимостью энергии связи ядра от числа протонов и нейтронов в нем. По мере изменения числа нейтронов в ядре с определенным числом протонов энергия связи и его устойчивость к различным типам распада меняются. При обогащении нейтронами ядра излуч-ают электроны, т. е, становятся р -активными с превращением нейтрона в ядре в протон. При обеднении ядер нейтронами наблюдается электронный захват или р+-активность с превращением протона в ядре в нейтрон. У тя- [c.50]


    Если образование активного комплекса лимитирующей стадии реакции окисления включает образование или разрыв связи кислород— катализатор, то для ряда катализаторов можно ожидать линейную зависимость между энергиями активации реакций окисления и изменением энергии этой связи. Следствием этого должна быть симбатность в изменении каталитической активности в реакциях окисления и гомомолекулярного обмена кислорода. [c.89]

    Между катализаторами, рассматриваемыми в теории активных ансамблей Кобозева, и правильно сформированными кристаллическими катализаторами с частицами от 40-10 см и выше находится обширная группа нанесенных металлических катализаторов с размером частиц 30-10 —10 см и ниже. Для подобных катализаторов уменьшение дисперсности приводит к заметному изменению степени координации поверхностных атомов металла, что вызывает, в свою очередь, для поверхностно-адсорбированных молекул реагирующих веществ перераспределение по энергиям связи. Следствием этого является значительное изменение селективности в зависимости от степени дисперсности. [c.114]

    Экспериментально различить указанные возможности нелегко, поскольку существует корреляция между высшим потенциалом ионизации элементов (или сродством электрона к катиону металла) и электростатическим потенциалом катионов (рис. 1.31). Лишь бериллий резко отклоняется от указанной зависимости. Выше при описании результатов по гидрированию 2-метилбутена-2 было показано, что гидрирующая активность цеолитов проходит через максимум в зависимости от величины электростатического потенциала катионов. При этом нахождение бериллия на спадающей ветви этой зависимости можно было бы объяснить превышением оптимальной энергии связи реагирующих молекул с активными центрами [c.57]

    Изменение активности катализаторов в зависимости от состава связано с изменением энергии активации реакций в их присутствии (табл. 3.15). Имеющиеся в литературе сведения в [c.264]

    Хемосорбция углеводородов на металлах зависит от электронного строения металла [88] . в зависимости от числа незаполненных -орбиталей изменяется энергия связи адсорбированных молекул (теплота адсорбции). Однако природа поверхностных соединений металл — углеводород не установлена, и имеются разные мнения об их структуре (радикалы, комплексы). Дальнейшее изучение хемосорбции углеводородов, особенно в области температур, близких к началу целевой реакции окисления (область предкатализа), позволило установить наличие и состав образующихся поверхностных соединений, которые при повышении температуры становятся промежуточными активными формами каталитического процесса. Для механизма катализа особенно важны данные по адсорбции не индивидуальных углеводородов, а их смесей с кислородом. [c.47]

    Определена количественная зависимость между изменением энергии связи адсорбированного водорода и его каталитической активностью. [c.13]

    Другим необходимым направлением предстоящих исследований является систематическое изучение закономерностей, связанных с так называемым сублимационным членом, т. е. зависимостей между факторами кристаллизации, энергиями связей на поверхности твердого тела и каталитической активностью. [c.14]

    Вернемся теперь к вопросу о влиянии энергии связи кислорода на активность катализаторов в отношении реакций окисления. Если образование активного комплекса лимитируюш.ей стадии реакции окисления включает возникновение или разрыв связи кислород — катализатор, то в определенном ряду катализаторов можно ожидать линейную зависимость между энергиями активации реакций окисления и изменением энергии этой связи. Следствием этого должна быть симбатность в изменении каталитической активности в отношении реакций окисления и гомомолекулярного обмена кислорода. [c.51]

    Удельные каталитические активности различных металлов в области высоких температур значительно различались. У элементов четвертого периода удельная каталитическая активность в реакции изотопного обмена возрастала с увеличением порядкового номера, достигала максимума у никеля и затем резко снижалась при переходе к меди. Аналогичная зависимость наблюдалась и в других реакциях, протекающих с активацией водорода в реакции окисления водорода в богатых водородом смесях [49], в реакции гидрирования этилена [50], в реакции обмена дейтерия с аммиаком и этаном [51]. Близкие значения удельной каталитической активности Pt и Ni, а также резкое падение ее при переходе от Ni к Си и от Pt к Au Боресков объясняет зависимостью каталитической активности от числа неспаренных электронов в d-зоне металла. Энергия связи хемосорбированного водорода с металлом зависит от числа неспаренных -электронов. На Fe [52] и Ni [53] в силу незаполненности d-зоны адсорбция водорода протекает с боль-щой скоростью. [c.56]


    При решении вопросов, связанных с подбором катализаторов, широкое распространение получило определение корреляционных зависимостей между каталитической активностью и теми или иными физико-химическими свойствами катализаторов параметрами кристаллической решетки катализатора [94], процентом -характера металла [95], работой выхода электрона [96, 97], числом неспаренных электронов в -зоне [54, энергией связи катализатор—субстрат [94] или промежуточных соединений, через которые возможно протекание процесса [98], и т. д. Такие корреляции каталитических свойств с физико-химическими свойствами веществ носят эмпирический характер и лишь в некоторых случаях могут быть использованы при прогнозировании и подборе катализаторов. [c.63]

    Поскольку каталитические реакции с участием водорода осуществляются через стадии образования связи между поверхностью катализатора и водородом, естественными оказались поиски корреляций каталитической активности металлов с такой энергетической характеристикой их поверхности, как прочность адсорбционной связи металл — водород [24, 68]. Было показано, что действительно существует зависимость каталитической активности некоторых металлов в реакциях с участием молекулярного водорода от энергии связи Сме-н- На рис. 7 представлены вулканообразные кривые, выражающие такую зависимость для реакции гидрирования этиленовых соединений. Общим для этих кривых является то, что на вершинах кривых находится родий, обладающий оптимальной энергией связи Ме—Н для гидрирования этиленовых соединений. При гидрировании соединений, содержащих иные типы химических связей, оптимальными оказываются катализаторы с другими значениями Сме-н Для гидрирования бензола — платина, ацетона — никель и платина. [c.65]

    На рис. 27 представлена зависимость удельной каталитической активности веществ в реакции глубокого окисления пропилена при 300° С от величины энергии связи кислород — катализатор. Наблюдаемое уменьшение скорости реакции с увеличением qs согласуется с представлением о том, что процесс протекает по схеме попеременного восстановления — окисления поверхности, причем в медленной стадии происходит разрыв связи кислород — катализатор. Аналогичные зависимости получены для процессов глубокого окисления большого числа других органических соединений на простых и сложных окисных катализаторах [16—25]. [c.191]

    Имеющиеся данные не позволяют в настоящее время надежно сформулировать схему механизма реакций данного класса. Можно предположить, что в ходе каталитического превращения из окисляемой молекулы и поверхностного кислорода образуются солеподобные поверхностные комплексы, при десорбции которых получаются органические кислоты или их ангидриды. Например, при окислении акролеина в акриловую кислоту можно допустить промежуточное образование поверхностных акрилатов. Если это действительно так, то следует ожидать, что активность и избирательность должны существенно зависеть как от энергии связи кислород— катализатор, так и от кислотности поверхности [26], Для указанного процесса такие зависимости установлены [77]. [c.202]

    Поскольку в данной стадии связь кислород—катализатор разрывается (или сильно ослабляется), то следует ожидать уменьшения каталитической активности с ростом энергии связи кислорода. Такая зависимость действительно наблюдается [1 0]. Одновременно селективность по формальдегиду увеличивается, как это установлено в работе [120]. График, построенный на основании данных [120], иллюстрирует это (рис. 31) [128]. Увеличение селективности с ростом энергии связи кислород—катализатор объясняется, вероятно, тем, что при глубоком окислении спирта [c.209]

    Некоторую помощь при практическом подборе катализаторов могут оказать описанные выше зависимости между каталитическими и физико-химическими свойствами, обоснованные данными по механизму реакций. Наиболее определенной является зависимость между каталитической активностью в отношении процессов глубокого окисления и энергией связи кислород — катализатор, позволяющая ориентировочно оценивать до опыта относительную скорость катализа. Пока менее определенны и четки подобные зависимости для процессов неполного окисления. [c.213]

    Весьма интересно, что зависимость каталитической активности от энергии связи поверхностного кислорода наблюдается при температурах, когда реакция [c.222]

    Более общей характеристикой, определяющей протекание всех окислительных превращений и, в частности, активность и избирательность окислов в отношении процесса окисления NHg, является энергия связи кислорода с поверхностью (характеризуемая, например, величиной qs)- Наличие четкой зависимости скоростей окисления аммиака в азот и закись азота (рис. 45, 46) от q свидетельствует о разрыве связи Ме—О в лимитирующей стадии и позволяет применить известные соотношения [c.251]

    Время жизни свободных радикалов обычно очень мало (порядка тысячных долей секунды) вследствие их высокой химической активности, приводящей к рекомбинации. Концентрация активных частиц — радикалов не может быть вычислена по законам статистического распределения, так как во время реакции значительно превышает равновесную. Однако в элементарных актах взаимодействия радикала с молекулой принимают участие не любые частицы, а энергетически активные. Энергия активации взаимодействия радикала с молекулой хотя и меньше энергии активации между молекулами, но не равна нулю. Поэтому скорость реакции в каждом из звеньев цепи связана с законами статистического распределения и может быть рассчитана по теории соударений. Реакция же в целом представляет собой сложный процесс образования и параллельного исчезновения радикалов, причем соотношение скоростей этих процессов может меняться в зависимости от условий тип реакции, объем и форма сосуда, материал стенок, давление, температура, примеси и т. д. [c.149]

    Наличие вулканообразных экстремальных зависимостей активности окисных катализаторов от энергии связи кислород — металл [c.80]

Рис. IV.2. Зависимость мольной активности катализаторов реакции окисле-йнл пропилена в акролеин от энергии связи кислорода с поверхностью окисла металла. Рис. IV.2. <a href="/info/9946">Зависимость мольной</a> <a href="/info/642313">активности катализаторов реакции</a> окисле-йнл пропилена в акролеин от <a href="/info/330839">энергии связи кислорода</a> с <a href="/info/527757">поверхностью окисла</a> металла.
    Существует прямая связь между реакционной способностью полимерной цепи и характером равновесного ММР [6, с. 23]. В случае выполнения постулата Флори равновесным является экспоненциальное распределение для линейных цепей. Такая связь является следствием линейной зависимости свободной энергии цепи от ее длины. Появление нелинейного члена приводит как к отклонению равновесного распределения от экспоненциального, так и к появлению зависимости константы скорости от длины макромолекулы. Примером этого могут служить распределение циклических молекул по размерам и зависимость константы скорости роста цепи на циклических активных центрах от размера [6, с. 43—45], В большинстве же изученных систем в случае равновесия устанавливается экспоненциальное распределение для линейных цепей, т. е. нет основания подвергать принцип Флори сомнению. [c.10]

    Подавляющее большинство классических катализаторов, содержащих тяжелые металлы I, II и VIII групп периодической системы (железо, платину, цинк медь и др.) и успешно применшопщхся для дегидрирования спиртов и нафтенов, для процесса получения изопрена оказались непригодными, так как при высоких температурах вызывали крекинг углеводородов [10, 41]. Основные усилия исследователей были направлены на выявление подходяхцих окисных катализаторов, обладающих более мягким действием. Уже в 30-х годах Тейлором с сотрудниками, исследовавшими адсорбцию водорода и других газов окислами металлов при высоких температурах, было показано, что наиболее активными являются окислы хрома и марганца [42]. К аналогичным выводам пришли позднее Толсто-пятова и Баландин [43], рассматривавшие активность и селективность окисных катализаторов дегидрирования в зависимости от энергий связи катализатора с водородом и углеродом. [c.113]

    Корреляция между каталитической активностью и энергией связи кислорода справедлива не только для простых окислов, но и для более сложных соединений, папример, шпинелей, солей типа вана-датов, молибдатов, смешанных окислов и т. п. Это открывает возможность регулирования каталитической активности окислов путем изменения их состава. Так, в молибдатах с ростом электроотрица-тельности катиона в ряду Са, А), Сг, Fe энергин связи кислорода умепынается, а каталитическая активность возрастает. Эта зависимость позволяет предвидеть качественное измене1ше активности ири изменении состава сложных окисных катализаторов. [c.465]

    Адсорбция поверхностно активных веществ на поликристаллических металлических электродах находится в зависимости от поверхностной энергии на отдельных гранях кристаллов и поверхностной энергии на ребрах и вершинах кристаллов. По мнению Лангмьюра, каждый поверхностный атом металла служит адсорбционным центром, способным поверхностной энергией связать ион, атом или молекулу адсорбируемого вещества. [c.103]

    Информативность метода увеличивается, если определять энергии электронов на атомах и металла, и лигандов. Определение энергии связи 1б -электронов на атомах лиганда и 2р-электронов центрального нона в комплексах [Со1тЛ2(02) ] позволило определить структуру активного центра металл—молекулярный кислород, степень окисления кобальта в оксигенированном и деокси-генированном комплексах, установить изменеиие ЭСЭ на различных фрагментах комплексов при вхождении в исходный комплекс различных лигандов. Аналогичные исследования комплексов -металлов с макроциклами, содержащими четыре атома азота, по измерению методом РЭС энергии связи 1.ч-электронов атомов азота и 2р-электронов ионов металлов позволили выяснить зависимость этой энергии от заместителей в макроцикле, от типа взаимодействия металл— донорный атом макроцикла и от природы аксиальных лигандов. [c.261]

    Начиная с 60-х годов этот подход получил особенно широкое развитие в работах Г. К. Борескова с сотр. Идея этих работ основана на возможности установления вытекающей из соотнощения Бренстеда—Поляни связи между изменением энергии активации реакции и изменением определенных термодинамических параметров каталитической системы. Первоначально этот подход, был успешно применен к исследованию активации молекулярного кислорода и разнообразных процессов глубокого окисления. Удалось выявить отчетливую зависимость каталитической активности от энергии связи поверхностного кислорода, которая позволяет направленно вести подбор катализаторов [31—32]. Именно Борес-кову и принадлежит идея обобщения всех теоретических и экспериментальных работ в данной области в единое целое, названное им теорией предвидения каталитического действия . [c.249]

    Экстракция воды. Экстракция воды играет значительную роль при извлечении вещества по гидратно-сольватному механизму. Некоторые авторы [119—121] полагают, что в системах с участпем нейтральных фосфорорганических соединений образуются различные сольваты, например ТБФ-НаО, ТБФ-2Н20. Однако, как было, показано Розеном [123], в этой системе проявляется значительная положительная неидеальность, а образование соединений, как известно, должно приводить к отрицательной неидеальности. Аналогичный вывод был сделан и Михайловым [161]. О слабом химическом взаимодействии говорит также линейная зависимость концентрации воды в органической фазе от ее активности в водной [122]. Используя физико-химические методы, Николаев с сотр. не обнаружили в органической фазе данной системы каких-либо химических соединений [162], однако в системе Н2О — ТБФО авторы предполагают образование клатратов [163]. Вместе с тем Розен с сотр. [123], исследовав экстракцию воды растворами ТБФ, пришли к заключению, что в органической фазе между ТБФ и водой образуется слабая водородная связь, энергия которой, по мнению авторов, составляет примерно половину энергии связи вода — вода. Проведя термодинамический анализ, авторы заключили, что основной вклад при экстракции воды дает энтропийный фактор. [c.404]

    Все полученные результаты позволяют сделать следующие выводы 1. Скорость роста трещин в резинах в присутствии агрессивной среды определяется скоростью химического взаимодействия среды с полимером. 2. Условия испытаний (s= onst или a= onst) не оказывают заметного влияния на температурную зависимость процесса. Энергия активации процесса разрушения полимера в агрессивной среде в сильной степени зависит не только от характера химического взаимодействия со средой, но йот адсорбционных явлений, поскольку эта реакция гетерогенна. Данные по влиянию агрессивных сред на вулканизаты СКС-30-1 показывают, что в газообразном H I, действующем на поперечные связи О—Ме, величина энергии активации больше, чем в озоне, и равна 9,5 ккал/моль (а=200%). Кажущаяся энергия активации химического взаимодействия НС1 с полимером в водном растворе должна быть более высокой, чем при взаимодействии полимера с газообразным H I, так как она складывается из энергии активации дегидратации НС1 (по имеющимся данным , она равна 8,6 ккал/моль), энергии активации дегидратации активных центров полимера и энергии активации взаимодействия дегидратированного НС1 с полимером. Кажущаяся энергия активации процесса разрушения резин в растворах СН3СООН как при малых, так и лри больших деформациях несколько ниже (см. табл. 25), чем в растворах H I, что, по-видимому, связано с меньшей энергией дегидратации молекул уксусной кислоты и с лучшей ее адсорбцией на полимере. [c.354]

    Каталитическая активность сложных оксидных систем как и индивидуальных оксидов хорощо коррелирует с прочностью связи кислорода в решетке твердых тел. С увеличением прочности этой связи активность сложных оксвдных катализаторов в реакциях глубокого окисления органических соединений, как правило, убьтает. Зависимость между скоростью глубокого окисления органических веществ на различных катализаторах и прочностью связи кислорода с их поверхностью часто рассматривается как доказательство протекания указанных реакций по стадийной схеме, включающей отрыв поверхностного кислорода в качестве обязательной (даже лимитирующей) стадии процесса. В то же время известны и другие, неокислительные реакции, для которых также наблюдается довольно хорошая корреляция между скоростью катализа и прочностью связи кислорода. Например, на молибдатах различных элементов существует зависимость между скоростями изомеризадии бутена-1 в бутен-2, глубокого окисления олефинов и восстановления поверхности водородом и пропиленом (рис. 20). Скорости всех указанных реакций зависят от энергии связи кислорода с катионом. [c.100]

    В заключение следует остановиться на вопросе о соотношении между частными зависимостями изменения энергий промежуточного взаимодействия при катализе, а именно подвижности кислорода различных окислов, и электронной структурой катализаторов. Существование такой связи очевидно. Так, в рассматриваемом случае связывание и отщепление кислорода включает электронные переходы при превращении молекул в атомарные ионы и обратно п энергия промежуточного взаимодействия должна зависеть от работы выхода катализатора. К сожалению, однозначно связать изменение работы выхода и каталитической активности в ряду исследованных катализаторов нам не удалось. По-видимому, это отражает общую закономерность. Теплоту образования на поверхности катализатора зарял енной частицы, например иона кислорода О , можно представить так  [c.54]

    Действу -льно, наиболее активные катализаторы окисления СО — окислы Со, Си — ймеют дз, близкую к Q/2. Эта зависимость, однако, имеет приблизительный характер при точном ее соблюдении наиболее активными катализаторами окисленья СО должны были быть Ре Оз, СГгОз, МпОа, у которых энергия связи кислорода с поверхностью ближе всего (29, 28, 28 ккал/моль соответственно) к значению Q/2. Практически же наибольшей каталитической активностью в реакции окисления СО обладают окислы меди и кобальта, энергия связи кислорода с поверхностью которых меньше (23 ккал/моль) Q/2. [c.221]

    Переходя к рассмотрению некоторых черт механизма окисления водорода на переходных металлах, следует прежде всего отметить, что наличие корреляции между скоростью окисления водорода и позволяет, как и в случае окислов, постулировать разрыв связи Ме—О в лимитирующей стадии реакции. Однако, в случае металлов, судя по зависимости активности и от энергии связи Ме—Н, в лимитирующей стадии реакции происходит также разрыв связи Ме—Н. Следовательно, состав активированных комплексов лимитирующей стадии процесса окисления водорода на окислах и на переходных металлах различен, эти вещества в рассматриваемой реакции неоднотипны [42, 211]. Это подтверждается тем, что зависимости скоростей окисления на металлах и окислах различаются (рис. 40). Приведенные на этом рисунке данные об активности металлов относятся к кинетической области протекания реакции окисления водорода. Необходимо подчеркнуть также, что характерной чертой этого процесса на металлах является возможность его осуществления по гетерогенно-гомогенному механизму. В то же время, даже на одном из наиболее активных катализаторов окисления водорода — платине — эта реакция, во всяком случае в отсутствие свободных объемов, при температурах ниже 100° С протекает чисто гетерогенно. Это подтверждается практическим постоянством величин удельной каталитической активности платиновых катализаторов, удельные поверхности которых различаются примерно на 4 порядка [261]. В этих условиях реакция окисления водорода на платине осуществляется, по-видимому, по стадийному механизму через взаимодействие кислорода с поверхностью с образованием ОН-групп и их последующую реакцию с водородом, приводящую к выделению воды. Во всяком случае, протекание окисления водорода по такому механизму однозначно показано на пленках серебра при комнатной температуре [44, 217, 262—264]. [c.246]


Смотреть страницы где упоминается термин Зависимость активности и энергиями связей: [c.53]    [c.71]    [c.231]    [c.64]    [c.231]    [c.64]    [c.346]    [c.413]    [c.9]    [c.244]    [c.188]    [c.201]    [c.298]   
История стереохимии органических соединений (1966) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость активности от

Связь связь с энергией

Связь энергия Энергия связи

Энергия зависимость

Энергия связи



© 2025 chem21.info Реклама на сайте