Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы, атомность редкоземельные

    Рентгеноспектральный (рентгенофлуоресцентный) анализ пригоден для определения содержания всех элементов, атомный номер которых >13, т. е. начиная с алюминия. Особое преимущество метод имеет ири анализе смесей элементов, близких по свойствам, наиример редкоземельных элементов, тантала и ниобия. Рентгеноспектральный метод применяют для анализа руд, сплавов, металлов,. различных продуктов химической технологии. Диапазон определяемых концентраций очень широк можно определять макро- (от 1 до 100%) и микро- (10 —10- 7о) компоненты. [c.44]


    Итак, первым элементом, атомный вес которого был изменен еще в самый момент открытия периодического закона, был бериллий. В тот момент Менделеев действительно выдвинул прогноз, что бериллий должен оказаться аналогом магния, но не алюминия и что его атомный вес должен быть поэтому уменьшен в полтора раза. Однако в данном случае, как вскоре выяснилось, речь должна была идти, строго говоря, не о прогнозе, обращенном в будущее, а о возвращении назад, в прошлое, к магнезиальной формуле окиси бериллия, которую за 27 лет до этого предложил и обосновал Авдеев. По той же причине, а также потому, что позднейшие дискуссии об атомном весе бериллия приобрели особенно острый характер и оказались исключительно важными для судьб периодического закона, мы выделили материал по истории уточнения атомного веса бериллия в особую главу. Это дало нам возможность рассмотреть историю научного содружества между Менделеевым и Браунером. В дальнейшем мы еще не раз остановимся на характеристике их взаимоотношений в связи е изучением Браунером атомного веса церия, церитов и теллура, а также в связи с его намерением заняться определением атомного веса урана с тем, чтобы подтвердить правильность менделеевских прогнозов. Кроме того, в третьей книге будет рассмотрена последняя работа Браунера о размещении всех редкоземельных элементов в периодической системе, что затрагивало научные интересы Менделеева. [c.36]

    К стр. 9 (см. ф. 48). Стр. 9 , будучи продолжением предыдущей, содержит развитие той мысли, изложенной на стр. 8 , что таблица элементов Д. И. указывает порядок изменения, в данном случае, атомных весов. Этот порядок Д. И. выясняет двояким способом 1) он вычитает из атомного веса данного элемента атомный вес типического элемента, стоящего в одном из двух первых рядов системы в той же группе, а полученную разность делит на номер периода при этом первым периодом считается ряд элементов от Ка до семейства железа, вторым периодом — от Си до семейства палладия, третьим — от Ag до семейства редкоземельных элементов, четвертым — от неизвестного элемента в I группе до семейства платины, пятым — от Ли до Иг. Разности атомных весов образуются здесь следующим образом. В таблице элементов имеем  [c.632]

    Числовые значения, отмеченные для редкоземельных элементов (атомные номера от 58 до 71) представляют собой [c.15]

    Редкоземельные элементы обладают очень сходными химическими свойствами, их валентность равна трем. По-видимому, все этн элементы необходимо было поместить в один столбец периодической таблицы. Однако ни один из столбцов не был таким длинным, чтобы вместить четырнадцать элементов. Далее, поскольку атомные веса всех редкоземельных элементов очень близки, их следовало поместить в один горизонтальный ряд, другими словами, в один период. В принципе их можно было поместить в шестой период, если предположить, что он длиннее, чем четвертый и пятый, которые в свою [c.104]


    Химические свойства 4/-элементов (лантаноидов) в основном схожи со свойствами лантана, поэтому разделение лантаноидов (называемых также редкоземельными элементами) сильно затруднено. Поскольку 4/-электроны слабо экранируют заряд атомного ядра, размеры ионов лантаноидов +3 уменьшаются от Ьа к Ьи они мало отличаются от размеров иона У +, принадлежащего предыдущему периоду. Этот эффект получил название лантаноидного сжатия. Он проявляется и у соответствующих пар элементов других побочных подгрупп — циркония 7г и гафния Н в IV группе, ниобия КЬ и тантала Та в V, молибдена Мо и вольфрама в VI группе. [c.153]

    Сложность периодического закона определяется также и тем, что в одном месте таблицы на значительном отрезке изменения атомной массы свойства элементов практически не изменяются. Четырнадцать редкоземельных элементов имеют одинаковую валентность и очень близкие свойства. [c.453]

    Замена атомной массы зарядом ядра была первым шагом в раскрытии физического смысла периодического закона. Далее, было важно установить причины возникновения периодичности, характер периодической функции зависимости свойств от заряда ядра, объяснить величины периодов, число редкоземельных элементов и пр. [c.455]

    Рентгенофлуоресцентный анализ пригоден для качественного и количественного определения всех элементов с атомным номером Z 13. Так как в этом случае анализируют большие количества проб, то вопрос об их гомогенности не является таким принципиальным, как в оптической атомной спектроскопии. В принципе каждую пробу (независимо от ее формы и размеров) можно проанализировать без разрушения образца. Особое преимущество метода связано с малым числом линий в спектрах, что очень ценно при анализе смесей близких по свойствам элементов (редкоземельные элементы, ЫЬ—Та, анализ твердых сплавов). [c.207]

    Отметим, что при расчете кристаллов, так же как и молекул, электроны внутренних атомных оболочек, которые, как правило, не играют активной роли, могут быть объединены с атомным ядром в неподвижный остов кристаллической решетки. Такое валентное приближение оказывается недостаточным, если вещество содержит ионы или атомы переходных или редкоземельных элементов. В этих случаях в рассматриваемую систему электронов необходимо включать электроны внутренних незаполненных оболочек. Электроны атомных остовов приходится принимать во внимание, например, в расчетах, в которых учитывается корреляция электронов, а также при исследовании таких явлений, как поглощение рентгеновских лучей веществом и т. п. [c.151]

    Этот метод был использован для анализа смеси Zr — Hf в виде их соединений с ализарином S [42] и с арсеназо П1 [43]. Молярные коэффициенты погашения соединений Zr и Hf с тем и другим реагентом были одинаковы, но достаточной была разница в атомных весах. Различие в величинах молярных коэффициентов погашения соединений редкоземельных элементов с такими реагентами как арсеназо М и ортаниловый А позволяет анализировать двухкомпонентные смеси элементов этой группы, несмотря на незначительные различия в атомных весах. [c.78]

    Для построения градуировочного графика (условия приведены выше) готовят серию растворов с постоянной суммой редкоземельных элементов, соответствующей содержанию в выбранном оптимальном растворе, но содержание элемента в которых с меньшим атомным весом (Рг или У) меняется от 10 до 90%. Измеряют при к 640 нм оптическую плотность этих растворов по отношению к раствору элемента с большим атомным весом (Ег или Ьа), имеющему концентрацию, равную сумме редкоземельных элементов в эталонных растворах. По данным этих измере- ний строят градуировочный график в координатах А — процентное Содержание элемента с меньшим атомным весом (см. стр. 84), используя метод наименьших квадратов. [c.216]

    Большие трудности (порой они казались непреодолимыми) возникли при изучении и размещении редкоземельных элементов в периодической системе. Они были связаны с тем, что все эти элементы оказались трехвалентными. С изменением атомной массы от 138,9 (La) до 183 (Та) химические свойства редкоземельных элементов менялись незначительно. Было ясно, что свойства этих элементов не зависят от их атомной массы. Тем самым подрывалось основное положение периодического закона. Поэтому вопрос о том, как разместить столь сходные по своим свойствам редкоземельные элементы и где для них найти место в таблице, представлял особую трудность как для Д. И. Менделеева, так и для других ученых, которые занимались изучением редкоземельного семейства . [c.288]

    Новые данные, полученные при изучении редкоземельных элементов, вновь поставили вопрос, в каком порядке, не нарушая логики построения периодической системы, разместить в ней семейство редких земель. В 1902 г. в итоге своих исследований Б. Браунер пришел к идее выделить все эти элементы в порядке увеличения атомных масс от 140 до 180 в совершенно особую, замкнутую интерпериодическую группу и поместить ее в одной большой клетке, расположенной в середине периодической системы, в восьмом ряду четвертой группы, между элементами этого ряда — церием и танталом. [c.289]


    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в гл. I, 5. Для иллюстрации внутренней периодичности в табл. 5 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 3) с уменьшением атомных радиусов в результате лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В, У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/ -оболочка. У гадолиния же при той же устойчивой 4/,-оболочке появляется один электрон на Sii-оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 /°-оболочку неустойчивой. Для элементов, следующих за Gd, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Благодаря стабильности указанной 4/ -оболочки европий часто функционирует в степени окисления 4-2 за счет бз -электронов, а один из семи неспаренных электронов на 4/ -оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/ -обо-лочка. В случае самария и тулия, находящихся левее указанных [c.172]

    Минералы, руды и месторождения циркония. Обогащение циркониевых руд. в земной коре содержится 0,02 вес. % 2г. Он более распространен, чем N1, Си, РЬ, 2п и некоторые другие металлы. В природе, встречается главным образом в виде минералов циркона и бадделеита. Всего же известно до 20 циркониевых минералов. Он входит в количестве до нескольких процентов в состав ряда минералов, большей частью содержащих редкоземельные элементы. Ассоциация циркония с ними объясняется близостью атомных радиусов. 2г изоморфно замещает Т1, ТЬ, Ре (И). Длл него характерна большая рассеянность содержится в подавляющем большинстве горных пород, причем в некоторых из них (щелочных сиенитах) в количестве, превышающем в несколько сот раз величину кларка. [c.309]

    Очень длинный период удалось вместить в таблицу, выделив из него четырнадцать элементов — редкоземельные металлы, или лантаноиды (элементы,. похожие на лантан с 2 = 57), с атомными номерами от 58 до 71, и поместив их в виде отдельного ряда в нижней части таблицы. Элементы, имеющие атомные номера от 90 до 103, называют актиноидами (элементы, похожие на актиний с 2=89) в таблице их размещают под лантаноидами. [c.104]

    Поведение трапсплутониевых элементов при хроматографических разделениях на анионитах также служило предметом исследований. Элементы с атомными номерами большими, чем у кюрия, удерживаются анионитами в среде концентрированной соляной кислоты [73, 120 ], в то время как америций и кюрий немедленно элюируются вместе с редкоземельными элементами. Для анионообменного отделения трапсплутониевых элементов от лантанидов применялись также кон-центрированные растворы хлорида лития [44] и тиоцианатные комплексы [22, 87, 115, 120]. Эти исследования дали ценную информацию о свойствах новых элементов. Анионообменный метод обеспечивает лучшее отделение трансплутониевых элементов от редкоземельных, чем описанный выше катионообменный метод. Примером практического применения анионообменного метода служит отделение прометия от америция, которое очень трудно осуществить другими способами. Полное разделение этих элементов достигается элюированием ЪМ тиоцианатом аммония [96]. [c.345]

    Образование кристаллических растворов между изоструктурньгми соединениями не наблюдалось или наблюдалось лишь весьма редко. ШтрунцЗ придает особое значение общему правилу, применимому к изоструктур-ным соотношениям, согласно которому изоструктурными могут быть соединения таких элементов, атомные номера которых отличаются на 1, 8, (1 +8), 18, (I + 18), 32 и (1 -1-32). Это правило можно рассматривать как обобщение правила диагонали Гольдшмидта , которое служит объяснением процесса замещения лития магнием, натрия кальцием или кальция иттрием в минералах, имеющих важное значение в геохимии . Замещение кальция редкоземельными элементами отчетливо выражено в минералах группы флюорита, хотя Махачки нашел его также в ортитах, имеющих следующую общую формулу  [c.61]

    Химия элементов, атомный номер которых больше, чем урана, тесно связана с химией урана, тория, актиния и редкоземельных элементов. Максимальное валентное состояние трансурановых элементов при окислении + 6. Устойчивость этого валентного состояния и других состояний, больших +3, уменьшается с увеличением атомного номера. Следовательно, валентное состояние + 3 является наиболее важным окисленным состояинем для элементов, следующих за плутонием, хотя существование всех четырех состояний валентности известно для трансурановых элементов, включая америций. В условиях слабого окисления, часто встречающегося в химической практике (например, в присутств.чи нитрат-нона или воздуха), наиболее устойчивым для урана в водных растворах является валентное состояние +6. В аналогичных условиях преимущественным для нептуния является валентное состояние Ч-5, а для плутония +4. Устойчивость к окисле 1ию аналогичных твердых соединений указывает на такую же зависимость от атомного номера. За исключением различий в устойчивости к окислению и восстановлению, химическое поведение аналогичных сое.динений урана н трансурановых элементов соверш енно одинаково разница в их поведении связана с атомным радиусом, зависящим от атомного номера, [c.151]

    С. Мейера и других по магнитной восприимчивости элементов, которые показали, что в рядах элементов атомная магнитная восприимчивость элементов или молекулярная — окислов достигает максимума в двух случаях в ряду железо — кобальт — никель и в семействе редких земель . В ряду окислов ВаО—ZTRjOg—Та Оз происходит переход от диамагнетизма к парамагнетизму последний достигает максимума у эрбия, затем снова падает по направлению к иттербию, а тантал уже снова диамагнитен. Стиль заключает какой бы атомный вес они (редкоземельные элементы) ни имели, они располагаются вместе и классифицируются в правильном порядке . Это одна из первых попыток подтвердить аномальное расположение редкоземельных элементов посредством измерения хода их физических констант и едва ли не первая активная попытка применить для этих целей магнитные свойства. Таким образом, и Томсен и Стиль близко подошли к идее об интерпериодической группе. Мы можем предположить, что их работы также оказали определенное влияние на Браунера его новая концепция, вызревавшая долгое время, как бы получила косвенную поддержку. [c.64]

    Близость атомных весов редких земель навела некоторых ученых на интересную мысль. Мы имеем в виду попытки увязать их удивительное сходство с явлением изотопии, характерным для радиоактивных элементов конца периодической системы. В 1906 г. была обнаружена слабая радиоактивность у калия, что свидетельствовало о возможности самопроизвольного распада атомов у элементов среднего атомного веса. Правда более детального развития высказанная мысль не получила достаточно четко она была сформулирована в работе русского химика Н. А. Орлова, крупного специалиста по редким землям. Он полностью принял браунеровский вариант и писал Что же касается того обстоятельства, что 10 и более элементов занимают в периодической системе место, как бы предназначенное для одного элемента, то редкоземельные элементы в этом отношении не являются одиночными подобное же явление представляют... и плеяды радиоактивных э.лементов и конечных продуктов их превращений. Так, в нулевой группе нужно признать плеяду трех эманаций на месте одного элемента эманации Ас, ТЬ и На с атомными весами 218,5 220,4 222,5 и т. д. . Однако, если изотопы того или иного элемента оказывались химически абсолютно идентичными, то у редких земель наблюдалось, хотя и малое, но вполне ощутимое химическое различие. В этом заключалась несостоятельность предположения. [c.72]

    Для удобства в табл. I и II Введения (стр. 14—16) приводится полный список химических элементов с некоторыми их характеристиками в табл. II элементы расположены по алфавиту. Столбец, озаглавленный Атомный вес , содержит значение массы наиболее распространенного изотона. Значения ионизационного потенциала заимствованы из данных Национального бюро стандартов. Распространенность взята из последних таблиц Гринстейна, которому автор весьма благодарен за новые уточненные данные. Столбец Звезды, туманности содержит недавно пересмотренные результаты различных предшествующих определений. Столбец Земля, метеориты объединяет данные Юри и Броуна. В том случае, когда данные для Земли и метеоритов расходятся, приводятся значения, основанные на результатах Зюс-са, рассматривавшего ядерные закономерности эти случаи отмечены звездочкой. Для редкоземельных элементов (атомные номера от 58 по 71) приведенные значения образованы комбинацией данных, полученных из исследований метеоритов и солнечного спектра (это отмечено двумя звездочками). [c.13]

    При экстракции трибутилфосфатом из водных растворов нитратов при концентрации НКОз 8—15,6 моль в 1 л растворимость редкоземельных элементов увеличивается с увеличением атомного номера. При концентрации азотной кислоты 0,3 мольЦл отношения обратные [459]. Исследование выполнено в многоступенчатой фракционной системе. Применение разбавленного трибутилфосфата уменьшает скорость экстракции. [c.445]

    Поскольку чистый углерод имеет небольшое эффективное сечение захвата нейтронов (3,5 Мбарн), его используют в атомных реакторах в качестве замедлителя нейтронов (ядерный графит) [24]. По данным отечественных и зарубежных исследователей [24, 156, 161], ядерный графит должен иметь плотност . 1650—1750 кг/м , эффективное сечение, характеризующее способность захватывать электроны, не более 4 Мбарн и низкую степень коррозии при взаимодеЛ-ствии с СОг. Особо высокие требования предъявляют к чистоте ядерного графита. Наиболее вредными примесями являются бор, ванадий, редкоземельные элементы и др. Эти примеси определялись в указанных выше работах специальными методами фотоколориметрии или пламенной спектрометрии. [c.103]

    Редкоземельные металлы разделяют на бумаге, пропитанной нонообменни-ками или нитратом аммония. На сильнокислой катнонообменной бумаге 8а-2 можно разделить лантан, церий и неодим методом центрифужной круговой хроматографии, используя для элюирования 0,4 М раствор гликолята (pH 3,76). Смесь Се, Рг, N(1, 8т, и 0(1 разделяют на анионообменной бумаге Ватман ОЕ-20 в растворе 0,15 М азотной кислоты в 99%-ном метаноле (Л/ Се — 0,06 Рг — 0,12 N(1 — 0,21 51т — 0,40 0(1 — 0,60). Для разделения 10 редкоземельных элементов и иттрия использую бумагу, пропитанную 10%-ным раствором нитрата аммония. Эллюируют пробу смесью ацетона и эфира (1 1) с добавками роданида аммония и соляной кислоты, а обнаруживают опрыскиванием насыщенным раствором ализарина в 90%-ном спирте. Порядок расположения пятен элементов соответствует порядку возрастания их атомных масс. Значения / , увеличиваются в ряду Ьа (0,08) Се (0,11) Рг(0,16) N(1 (0,20) 5т (0,31) 0(1 (0,44) V (0,49) Оу (0,50) Ег (0,56) Ь (0,59) Тт (0,90). [c.242]

    Периодический закон Д. И. Менделеева был общепризнан, хотя имелись и некоторые аномалии. Так, согласно периодическому закону, свойства элементов находятся в периодической зависимости от их атомных весов, и поэтому не может быть двух элементов с одинаковым атомным весом и разными химическими и физическими свойствами. Однако это наблюдается у кобальта и никеля порядок расположения по возрастающему атомному весу нарушен для теллура и иода. Д. И. Менделеев предполагал, что атомный вес теллура не верен, но это не подтвердилось, и теллур должен быть помещен в периодической системе до иода, хотя у него атомный вес больше. Кроме того, было неясно положение в периодической системе VIII группы и редкоземельных элементов, а также не нашлось места для инертных газов, открытых в самом конце XIX века. [c.91]

    Выбор оптимальной концентрации суммы редкоземельных элементов в эталонных растворах (а следовательно, концентрации элемента с большим атомным весом в растворе сравнения) проводят по методу Ба-стиана (см. стр. 72). Выяснять пределы соблюдения закона поглощения (выбирать оптимальную концентрацию суммы редкоземельных элементов) следует по растворам элемента с меньшим атомным весом (Рг, У). В мерные колбы емкостью 25 мл вводят раствор соли элемента с меньшим атомным весом (Рг или У) в количествах (мкг) 8, 16, 24, 32, 40, 48, 56 (интервал в концентрациях должен быть постоянным. Ас = = 8мкг), прибавляют 1 мл арсеназо М, 15 мл ацетатного буферного раствора и доводят объем раствора до метки водой. Измеряют на спектрофотометре при А- 640 нм оптическую плотность каждого последующего раствора по отношению к предыдущему [А ). Далее поступают, как указано на стр. 205. [c.216]

Рис. 49. Заоисимость энергии стабилизации в октаэдрическом поле от атомного номера редкоземельного элемента Рис. 49. Заоисимость <a href="/info/18758">энергии стабилизации</a> в <a href="/info/92394">октаэдрическом поле</a> от <a href="/info/7168">атомного номера</a> редкоземельного элемента
    В 1870 г. Д. И. Менделеев изменил значение массы урана (вместо 120 он принял 240), что впоследствии подтвердилось исследованиями К. Циммермана, определившего в 1881 г. плотность паров иВг4 и иСи. Он писал Д. И. Менделееву Я рад, что результат моих исследований полностью подтвердил предсказанный Вами атомный вес 240 и что вместе с этим элемент нашел ясное место в системе Некоторые поправки были внесены Д. И. Менделеевым в атомные массы элементов платиновой группы и редкоземельных элементов. [c.271]

    ДЛЯ элементов с более высокими атомными номерами. Пятый период содержит элементы от рубидия (НЬ) до ксенона (Хе) шестой период начинается с цезия (Сз). Нужно отметить, что шестой период включает 14 элементов (2 = 58—71) со сходными свойствами, составляющих группу редкоземельных элементов (или лантаноидов), электронная конфигурация которых соответствует заполнению 4/-поду-ровня. [c.35]

    Применение лантаноидов и элементов подгруппы скандия. В настоящее время они приобрели большое значение. Почти все эти элементы используются для создания метастабнльных уровней в различных твердых лазерных материалах и как активирующие добавки к люми-нос рам (см. 9). В виде мишметалла (смешанный металл), состоящего из различных редкоземельных элементов, их используют для приготовления пирофориых сплавов, из которых готовят кремни для зажигалок, смеси для трассирующих снарядов и пуль и т. д. Их применяют в качестве присадок (раскислителей) к цветным металлам и сплавам, как геттеры в высоковакуумных приборах, для сплавов специального назначения. Например, добавки церия, неодима и др. к сплавам магния повышают жаростойкость, что важно для деталей управляемых снарядов, сверхзвуковых самолетов, оболочек искусственных спутников. Гадолиний, самарий, европий хорошо поглощают тепловые нейтроны, поэтому применяются в ядерных реакторах. ФтзОз излучают мягкие Р-лучи (энергия 0,23 мэв) и поэтому используются в атомных микробатареях. [c.328]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Сс1) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 °-оболочку неустойчивой. Для элементов, следующих за 0(1, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бя -электронов, а один из семи неспаренных электронов на 4/-о6олочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ец и УЬ, 4/- и 4/ -оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бв -электронов при квазистабильных 4/- и 4/3-о6олочках. Для элементов начала внутренних периодов — Ьа и 0(1 — наблюдается только степень окисления - -3 вследствие устойчивости 4/ - и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]

    Скандий, иттрий и лантан в природе обычно встречаются вместе с четырнадцатью лантаноидами — элементами от церия (атомный номер 58) до лютеция (атомный номер 71). Все эти элементы, за исключением прометия (полученного искусственно), обнаружены в природе в очень нобольших количествах, причем основным источником этих элементов является минерал монацит — смесь фосфатов редкоземельных элементов, содержащая также некоторое количество фосфата тория. [c.528]


Смотреть страницы где упоминается термин Элементы, атомность редкоземельные: [c.9]    [c.9]    [c.144]    [c.289]    [c.168]    [c.50]    [c.50]    [c.68]    [c.16]    [c.348]    [c.408]    [c.103]    [c.103]    [c.501]   
История химии (1966) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте