Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсолютная химической реакции

    Далее для описания кинетики редокси-процесса используется теория абсолютных скоростей химических реакций. В применении к электрохимическим процессам скорость реакции в прямом направлении записывается как [c.356]

    Обычно, хотя и не всегда, скорость химических реакций удваивается при увеличении температуры на 10 . Как можно объяснить это правило При 300° К увеличение температуры на 10° означает увеличение абсолютной температуры на 3% (10/300) и отсюда следует увеличение энергии молекулы на 3% (так как средняя энергия молекулы пропорциональна абсолютной температуре). Таким образом, при увеличении средней энергии молекулы на 3% вероятность разложения молекулы увеличивается на 100%. Отсюда можно заключить, что поскольку необходимым условием для химического превращения является наличие у молекулы определенного запаса энергии, то участвовать в реакции может не каждая молекула, а некоторая группа молекул. Этот вывод становится очевидным, если рассмотреть две типичные кривые равновесного распределения энергии для идентичных систем при двух [c.193]


    Ряд вопросов, стоящих сейчас в центре внимания современной физико-химии, таких, как свободные радикалы, цепные реакции, теория абсолютных скоростей реакций, не могли быть должным образом изложены в этой небольшой по объему книге. Указанные проблемы в данный момент еще не имеют прямого непосредственного приложения к проектированию химических реакторов, и мы отсылаем интересующихся к специальным монографиям и статьям. Краткое упоминание об этих вопросах в первой главе имеет целью лишь привлечь к ним внимание читателя. [c.10]

    Следовательно, отклонение расчетных значений от опытных имеет принципиальное значение и показывает, что химическая реакция при активном столкновении не абсолютно достоверна, а имеет конечную вероятность, равную Р. Причин этого может быть несколько. Остановимся пока на двух из них. [c.127]

    Следует отметить, что с помощью рециклов можно повысить абсолютный выход любого продукта сложной химической реакции. Особенно важно то, что этого не может дать ни один из таких традиционных способов управления химической реакцией как изменение давления, температуры и других параметров, так как они в той или иной степени действуют на все реакции, а рециклы, свободно оперируя скоростью и составом потока, направляют реакцию в желаемую сторону в максимально возможной степени [45]. [c.126]

    В результате освоения техники исследования при низких температурах в начале XX века были разработаны методы низкотемпературной калориметрии. Это привело к определению низкотемпературных теплоемкостей веществ и последующему открытию Нернстом (1906 г.) нового теплового закона (третьего закона термодинамики), который, в частности, допускает, что при абсолютном нуле изменение энтропии в результате химических реакций [c.17]

    В связи с этими трудностями общий объем данных о равновесии и связанных с ним термодинамических параметрах химических реакций первоначально был сравнительно ограниченным. Открытие третьего закона термодинамики дало возможность определять химические равновесия на основе расчета абсолютных значений энтропии путем измерения низкотемпературных теплоемкостей и теплот фазовых переходов. В настоящее время этот путь часто оказывается более доступным, чем путь прямого определения равновесия, в особенности, если имеется возможность использовать для тех или иных составляющих величин готовые справочные данные. [c.32]

    Из результатов калориметрических определений наиболее точными в настоящее время являются данные о теплотах сгорания углеводородов и некоторых других соединений. Однако рассчитанные с их помощью тепловые эффекты химических реакций обладают обычно значительно меньшей относительной точностью, так как результаты получаются большей частью как сравнительно малая разность больших чисел. Обычно абсолютная погрешность теплового эффекта реакции больше, чем абсолютная погрешность данных об изменении ДЯ с температурой .  [c.33]


    Константы равновесия химических реакций определяются непосредственно по экспериментальным данным о составе реакционной системы при равновесии, а расчетным путем по уравнениям (I,13) или по константам равновесия реакций образования компонентов из простых веществ по уравнению (11,3). При выражении через изменение функции энергии Гиббса, (0°—Н° 1Т, константа равновесия для температуры Т определяется равенством (1,22). Стандартные изменения энтальпии и энтропии для многих групп химических реакций относительно слабо изменяются с изменением температуры. Поэтому для таких реакций член ГА5° возрастает практически прямо пропорционально абсолютной температуре и, следовательно, А0° в таких случаях можно приближенно рассматривать как линейную функцию температуры, а 1д— как линейную функцию обратной температуры Для реакции термической диссоциации Ь на свобод ые атомы [c.64]

    При расчете энергии Гельмгольца для стандартных условий используют уравнение (5Л1). Однако при практических расчетах изменения энергии Гельмгольца для химических реакций, протекающих при постоянном объеме и Т, используют стандартные значения тепловых эффектов и абсолютные значения энтропии. Стандартные состояния определяются тем, что концентрации веществ произвольного типа принимаются равными 1. [c.118]

    Константу равновесия химических реакций в настоящее время рассчитывают по тепловым эффектам химических реакций и абсолютным значениям энтропий участников реакции, используя формулу  [c.214]

    Третий закон термодинамики не имеет такого общего характера, как первый закон термодинамики (на его основе получены две термодинамические функции V и Н) и второй закон термодинамики, который вводит в термодинамику новую функцию-энтропию 5. Третий закон термодинамики определяет только нижнее граничное значение энтропии для начала отсчета температуры. Отклонение энтропии от нулевого значения при температурах, близких к абсолютному нулю, связано с частичной аморфизацией твердого тела (дефекты в решетке) или с тем, что вещество содержит примеси (появление энтропии смешения). Однако эти отклонения не исключают возможности расчета изменения энтропий при химических реакциях, так как ошибка в расчете будет составлять значение Р п 2. [c.216]

    Третий закон термодинамики — закон об абсолютном значении энтропии, который был сформулирован уже в начале XX столетия. Третий закон термодинамики позволяет вычислить константу равновесия химической реакции, а следовательно, и максимально возможный выход продукта реакции, не прибегая к опытному ее определению ни при одной из температур. [c.181]

    При повышении температуры системы, в которой возможна химическая реакция (системе, находящейся в равновесии, сообщается теплота), согласно принципу Ле Шателье — Брауна усиливается процесс, сопровождающийся поглощением теплоты, т. е. равновесие смещается в сторону эндотермической реакции. Влияние температуры будет сказываться на константе равновесия химической реакции тем сильнее, чем больше по абсолютной величине тепловой эффект. Поэтому при протекании двух параллельных реакций, например [c.256]

    Термин абсолютная энтропия , часто применяющийся в литературе, имеет условный смысл так, при вычислении О о можно принять во внимание ядерный спин, существование изотопов и други эффекты. Эффект ядерного спина и изотопный состав элементов обычно не принимаются во внимание при вычислении энтропии, так как эти эффекты компенсируются при расчете химических реакций. Энтропия, вычисленная без учета этих эффектов, обычно называется практической энтропией. [c.302]

    Многие сложные химические реакции, например каталитические, цепные и т. п., протекают через ряд последовательных и параллельных реакций, промежуточные частицы в которых, обладая высокой реакционной способностью, быстро реагируют, и концентрация их бывает на несколько порядков меньше концентрации исходных веществ и продуктов реакции. В методе стационарных концентраций, предложенном Боденштейном, принимается положение о том, что, начиная с какого-то малого отрезка времени, производные концентраций высокоактивных промежуточных продуктов по времени можно принять равными нулю. Это равносильно принятию положения о постоянстве концентрации высокоактивного промежуточного продукта. В действительности эти концентрации являются функцией времени, но производные по времени по абсолютной величине близки к нулю, и в дифференциальных уравнениях, где производные высокоактивных промежуточных продуктов входят в виде слагаемых, ими можно пренебречь как малыми величинами. Поэтому правильным было бы назвать данный метод методом квазистационарных концентраций. Применение метода Боденштейна рассмотрим на примере последовательной реакции [c.549]


    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]

    Теория абсолютных скоростей химических реакций [c.568]

    Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей химических реакций можно выделить две основные задачи расчет поверхности потенциальной энергии элементарного акта и расчет вероятности образования и времени существования переходного состояния. Первая задача связана с решением уравнения Шредингера для системы частиц, образующих активированный комплекс. Эта проблема очень сложна и в настоящее время приближенно решается с помощью современных ЭВМ только для простейших реакций. Поэтому в основном теория развивается в поисках методов оценки энергии и энтропии образования активированного комплекса исходя из свойств реагирующих молекул. [c.568]

    Абсолютные значения внутренней энергии различных веществ (но-видимому, очень большие) нам совершенно неизвестны. Однако разности между значениями внутренней энергии тех или иных веществ измерены во многих случаях с большей точностью. Основанием для этих измерений послужили экспериментальные определения тепловых эффектов различных химических реакций. Поскольку значения внутренней энергии зависят от температуры, от нее зависят и тепловые эффекты реакций. Поэтому для сравнительных расчетов используют стандартные значения тепловых эффектов, приведенные к определенной стандартной температуре. В качестве такой стандартной температуры условились принимать 25 - С (или 298,15 К). Тепловые эффекты реакций зависят также от агрегатного состояния участвующих в реакции веществ поэтому в термохимических уравнениях агрегатное состояние веществ обязательно учитывают Стандартным состоянием каждого данного вещества считается агрегатное состояние, присущее ему при температуре 25°С и давлении 101,3 кПа. [c.77]

    Константа равновесия К любой химической реакции определяется изменением свободной энергии АР при данной абсолютной температуре Т [c.19]

    Разработчик ХТС должен отдавать себе отчет в том, что не все параметры системы могут быть определены абсолютно точно. Это относится, например, к таким величинам, как коэффициенты теплопередачи, константы скоростей химических реакций, активности катализаторов, содержание примесей в сырье и т. д. Кроме того, некоторые параметры системы могут непрерывно изменяться в процессе ее функционирования. Например, под действием каталитических ядов происходит дезактивация катализатора (его отравление). [c.176]

    В связи с тем, что нами для расчетов термодинамики химических реакций, использовались исходные данные, взятые из различных источников, возникает вопрос о различии этих данных для графита, водорода, кислорода и получаемых из них углеводородов. В табл. I приведены значения приращения энтальпии, функции энергии Гиббса и энтропий кислорода, водорода, графита, метана, этилена и ацетилена при температурах 298, 15,500, 1000 и 1500° К по двум источникам [34] и [55], а также показана разность между ними. Расхождения между этими величинами для кислорода и водорода сравнительно небольшие, в четвертом знаке. Для графита и углеводородов погрешности несколько большие. Абсолютная погрешность термодинамических величин для углеводородов с повышением температуры обычно увеличивается. [c.144]

    Выражение (4) в общем случае отлично от О и по абсолютной величине равно температурному изменению теплового эффекта химической реакции при постоянном давлении в пределах рассматриваемых температур. Очевидно, чем больше температурная зависимость теплового эффекта, тем больше отличаются значения сравниваемых величин. Таким образом, согласно (I) тепловая мощность трубчатого реактора зависит от выбора температуры начала отсчета энтальпии [c.84]

    Абсолютная величина имеет существенное значение для сравнительной оценки чувствительности фотометрической реакции. Из уравнения = e l видно, что чем больще величины е - и /, тем меньшие концентрации С могут быть использованы для получения значений в оптимальном интервале измерения (см. стр. 467). Бесконечное увеличение / практически невозможно из-за аппаратурных ограничений, поэтому повышение чувствительности определения возможно, главным образом, за счет выбора таких химических реакций, для которых значения г - достаточно велики. Обычно значения для реакций, используемых в спектрофотометрии, гмеют порядок — m lO . [c.465]

    Принятые в настоящее время теории химического взаимодействия, т. е. теория столкновений и теория активного комплекса (переходных состояний, абсолютных скоростей реакций), подтверждают в принципе характер зависимости константы скорости )вакции от температуры, следующий из уравнения Аррениуса. -1а основе этих теорий установлено, однако, что предэкспонен-циальный множитель тоже зависит от температуры. Следовательно [c.218]

    Изложенный метод расчета химических равновесий базируется иа постулате Планка (стр. 95), ибо абсолютные энтропии веществ, участвующих в реакции, могут быть найдены лишь при допущении, что энтропия индивидуальных кристаллических веществ при абсолютном нуле равна нулю. Однако нетрудно видеть, что для обоснования метода расчета достаточно утверждение, что нзменепие энтроппи для всех процессов (в том числе и химических реакций), происходящих при абсолютном нуле с участием только кристаллических чистых веществ, не образующих твердых растворов, равно нулю. [c.315]

    За 150 лет, прошедших со времени первых успешных экспериментов Вёлера, органический синтез дал в руки химика арсенал изощренных методик, приводящий даже в некоторое замешательство своим объемом. Однако наблюдая легкость, с которой живые организмы создают сложные структуры в практически водных средах и при температурах немного выше комнатной, химик убеждается, что его прогресс в этой области не столь уж велик. Действительно, химики-органики постоянно стараются создать более быстрые, более простые и более дешевые препаративные методы. Поэтому эта книга является попыткой собрать рассеянные в литературе примеры новой техники проведения органических реакций — техники, которая начала использоваться только в последнее десятилетие. Во многих случаях новая методика снимает обычное требование проведения органических реакций в гомогенных, часто абсолютных , т. е. тщательно высушенных, средах. При межфазном катализе (МФК) субстрат, находящийся в органической фазе, учат ствует в химической реакции с реагентом, который находится в другой фазе — жидкой или твердой. Реакция осуществляется при помощи агента-переносчика. Этот агент, или катализатор, способен солюбилизировать или экстрагировать в органическую среду неорганические и органические ионы в форме ионных пар. [c.9]

    Если аррениусова энергия активации не зависит от температуры, уравнение (22-11) предсказывает, что график зависимости величины 1п/с от величины, обратной абсолютной температуре, должен иметь вид прямой линии. Это справедливо для многих реакций, и энергия активации является одним из стандартных экспериментально определяемых параметров, с помощью которых описывается химическая реакция. Если не зависит от температуры, уравнение (22-11) нетрудно проинтегрировать, что дает [c.366]

    При повышении температуры вязкость всех веш еств падает. Это верно для всех тех случаев, когда не происходит при этом никаких химических реакций, среди которых прежде всего следует иметь в виду явления полимеризации. С падением вязкости внутреннее трение масла приближается к таковому для воды, и ошибка, зависящая от возрастания отрицательной части равенства Уббелоде. сильно возрастает, существенным образом искажая результат. Поэтому определение вязкости в аппарате Энтлера, да и в других также, производимое с вязкими маслами при температуре 20°, может давать результаты, пропорциональные абсолютной вязкости, но то же самое масло при 50° и выше становится настолько подвижным, что градусы Энглера невозможно выразить в единицах абсолютной вязкости. Определения вязкости при высоких температурах имеют очень большое значение для определения технического достоинства масла, и для того, чтобы придать им более реальную ценность, пользуются вискозиметром Энглера-Уббелоде, с более узкой и длинной трубкой. В этом приборе 100 сш воды при 20° вытекают в 8 раз дольше, чем в приборе Энглера обыкновенной конструкции вел1гчина отрицательной части равенства в уравнении Уббелоде уже при подвижных маслах очень невелика, в случае воды составляя около 1% положительной части равенства. Эта конструкция позволяет улавливать разницу в удельных вязкостях керосина разного происхождения или приготовления, тогда как эта разница почти неуловима прибором Энглера. Оба варианта не исключают, а дополняют друг друга пользоваться прибором Уббе-лопе для определения вязкости даже веретенного масла при комнатной температуре очень неудобно, потому что вытекание продолжается около 40 мин. и больше, хотя и наблюдается скорость истечения не 200 с.и, как в аппарате Энглера, а только 100. Область применения вискозиметра Уббелоде ограничивается таким образом или жидкими, подвижными продуктами при обыкновенной температуре, или густыми при высокой. [c.244]

    Франк-Каменецкого не являются абсолютно точными. Согласно трактовке Франк-Каменецкого [321, диффузионной называется область, в которой скорость суммарного процесса всецело опредвг ляется скоростью диффузии, а кинетической — область, в которой скорость суммарного процесса всецело определяется скоростью химической реакции и не зависит от условий диффузии. [c.15]

    Допущение (VIII, 45) называется постулатом Планка (1912). При дальнейщем развитии термодинамики этот постулат получил широкое применение для определения так называемых абсолютных значений энтропии. Вместе с тем выяснился его условный характер было найдено, что и при абсолютном нуле некоторые составляющие энтропии, обусловл11ваемые спином ядра и изотопным эффектом, не становятся равными нулю. При обычных химических реакциях эти составляющие не изменяются. Поэтому практически их можно не учитывать, и для таких реакций выводы, получаемые на основе постулата Планка, не нуждаются в уточнении. Однако сам постулат приобретает характер условного допущения. [c.279]

    Изменение энтропии при реакции (Д5г) не содержит составляющей, относящейся к О К, так как при абсолютном нуле А5° химических реакций чаще всего бывает равно нулю (или очень малой величине). Поэтому разности Д5у — Д5л бывают в той или иной степени менее постоянными, чем ДЯу — АНх и чем разности (Д5г — АТт)у — (АЗт — А5гЗх. [c.139]

    Таким образом, принцип супероптимальности позволяет выявлять дополнительные резервы повышения эффективности химической реакции и максимально использовать ее потенциальные кинетические возможности. Одним из важных аспектов, связанных с применением этих положений, является подход к подбору катализатора для процесса. Подбор катализатора должен производиться исходя из максимального значения абсолютной скорости реакции при проведении ее на данном катализаторе и в данных условиях, обеспечивающих максимальную производительность реактора. [c.301]

    Кииетнчес1 ие уравнения в случаях меняющегося объема должны бить дополнены слагаемыми, учитывающими изменение концентраций за счет сжатия или расширения газа. Можно, однако, показать, что этих слагаемых не возникает, если уравиепия химических реакций составить пе для абсолютных, а для относительных концентраций [c.6]

    Излучение, возникающее в отсутствие химической реакции (или радиоактивного распада), называется тепловым. В этом случае наиболее интенсивное при данной температуре излучение имеет так называемое абсолютно черное тело, которое полностью поглощает любые падающие на него лучи, т. е. отличается нулевой прозрачностью и отражательной способЕюстью. Интенсивность теплового излучения абсолютно черного тела не занисит от его иных фи-яико-химических свойств и однозначно определяется величиной абсолютной температуры она пропорциональна Т, т, е. быстро возрастает с повышением температуры. [c.110]


Смотреть страницы где упоминается термин Абсолютная химической реакции: [c.223]    [c.380]    [c.122]    [c.18]    [c.116]    [c.87]    [c.568]    [c.576]    [c.132]    [c.7]    [c.183]    [c.22]   
Руководство по физической химии (1988) -- [ c.255 ]




ПОИСК





Смотрите так же термины и статьи:

Левича Догонадзе Кузнецова теория химических реакций в полярных средах отличия от теории абсолютных скоростей реакций

Скорость химических реакций абсолютная, теория

Создание современных представлений в области кинетики в катализа (теория абсолютных скоростей реакций, полуэмпирические корреляции типа строение — реакционная способность, теория промежуточной гемосорбции мультиплетная, электронная, активных ансамблей) (ЗОО Учение о химическом равновесии (вторая половина

Химическая кинетика и теория абсолютных скоростей реакций

Энтропия абсолютная при химической реакции



© 2025 chem21.info Реклама на сайте