Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оптически активных

    Первоначально свойства и поведение поляризованного света интересовали исключительно физиков. Однако в 1815 г, французский физик Жан Батист Био (1774—1862) показал, что при прохождении поляризованного света через некоторые кристаллы происходит поворот плоскости колебаний (плоскости поляризации) световых волн. В одних случаях она поворачивается по часовой стрелке (правое вращение), в других — против часовой стрелки (левое вращение). К числу кристаллов, обладающих указанным свойством,— оптической активностью, относятся и кристаллы ряда органических соединений. Белее того, некоторые из этих органических соединений, например различные сахара, оптически активны и в растворах. [c.86]


    Объяснить причину возникновения изомерии только с помощью структурных формул Кекуле невозможно. Первый шаг в этом направлении был сделан в 1848 г. французским химиком Луи Пастером (1822—1895). Кристаллизуя из водного раствора винограднокислый натрий-аммоний при комнатной температуре, Пастер обнаружил, что образованные в этих условиях кристаллы асимметричны. Причем наблюдаются две формы кристаллов правая и левая (при одинаковой ориентации кристаллов небольшая характерная грань у одних кристаллов находилась слева, а у других — справа). Пастер сумел под увеличительным стеклом при помощи пинцета тщательно разделить оба типа кристаллов. Свойства растворов этих кристаллов оказались полностью идентичными исключение составляла только их оптическая активность — растворы обладали противоположным вращением. Превратив кристаллы, обладающие в растворе правым вращением, в кислоту, Пастер обнаружил, что получил известную ранее природную правовращающую винную кислоту, из кристаллов другого типа получался ее оптический изомер — ранее не известная левовращающая винная кислота. Отсюда Пастер сделал вывод, что в кристаллах виноградной кислоты содержится равное количество молекул право- и левовращающих винных кислот и именно поэтому виноградная кислота оптически неактивна. Соединения, подобные виноградной кислоте, стали называть рацемическими (от латинского названия виноградной кислоты). [c.87]

    Результаты этих опытов убедительно свидетельствовали о том, что оптическая активность связана с асимметрией. Однако асимметрия наблюдалась у кристаллов, а многие вещества проявляли оптическую активность как в кристаллическом состоянии, так н в растворах. При растворении веществ происходит разрушение упорядоченной упаковки молекул в кристаллах, и в растворе вещества находятся в виде отдельных беспорядочно перемещающихся молекул. Если оптическая активность обусловлена асимметрией, то асимметрична должна быть и сама структура молекул. [c.87]

    Из структурных формул не следует, что возможно существование асимметричных молекул, однако это не позволяет говорить об отсутствии связи между асимметрией и оптической активностью. Структурные формулы записываются на плоской поверхности доски или листа бумаги, но едва ли органические молекулы в действительности являются двумерными. [c.87]


    Соединения с асимметрическим атомом углерода (соединенным с четырьмя разными группировками) могут существовать в виде оптически активных изомеров соединения, не имеющие таких атомов, не проявляют оптической активности. [c.88]

    Более того, у соединений с несколькими асимметрическими угле-родами число экспериментально найденных оптически активных изомеров всегда совпадало с предсказанным на основании теории Ле Беля — Вант-Гоффа. [c.88]

    Правильность этого механизма убедительно доказывается весьма сильным подавляющим действием кислорода на эту реакцию. Присутствие свободных радикалов подтверждается также тем, что дальнейшее хлорирование оптически активного хлористого амила приводит к образованию рацемического соединения [10]. [c.140]

    Классический пример реакций, идущих по механизму 8 2 —реакции вальденовского обращения. Замена группы X в оптически активном RX приводит к образованию оптически активного RY, в котором асимметричный углеродный атом имеет обратную конфигурацию. [c.474]

    Можно предположить, что изучение оптической активности продуктов реакции дало бы возможность более определенно отличать реакции 1 от реакций S 2. В реакциях Sjy i в результате ионизации в качестве промежуточного продукта образуется стабильный карбоний-ион [см. уравнение (XVI.1.2)]. [c.475]

    Если реакция катализируется бренстедовской кислотой или основанием, то это явление носит название общего кислотного или основного катализа. Одной из первых изученных реакций, подвергающихся такому общему кислотно-основному катализу, была реакция мутаротации оптически активной глюкозы  [c.480]

    В заключение следует отметить, что в настоящее время стереохимический подход к некоторым каталитическим реакциям, в частности к гидрогенизации и гидрогенолизу, применяется сравнительно широко. Весьма перспективными представляются исследования гидрогенолиза оптически активных соединений [73—77]. Строение исходного соединения, природа металла, его концентрация в катализаторе, а иногда и носитель, влияют на механизм гидрогенолиза, который в зависимости от указанных факторов может проходить по 5 1-, или (-механизмам (см. обзор [78]). [c.82]

    Асимметрия у третичного атома углерода, по-видимому, нарушается в результате потери водорода и образования иона карбония. Потеря оптической активности наступает в результате действия двух факторов, а именно ) статистического превращения иона карбония в и /-формы, т.е. рацемизации 2) изомеризации иона карбония в такую структуру, производный углеводород от которой не является асимметричным. Поскольку рацемизация встречается чаще, чем изомеризация, то все вещества, принимающие участие в реакциях такого рода, выходят из них оптически неактивными. [c.38]

    Изомеризация, по-видимому, протекает через ионные цепные реакции. Механизм изомеризации изучался с применением техники высоковакуумной очистки реагентов и добавления следов загрязнений , действующих в качестве ингибиторов реакции. Применение оптически активных углеводородов, а также углеводородов, содержащих изотопы водорода или углерода, сильно помогло в выяснении механизма изомеризации. [c.52]

    Оптической активностью называется способность некоторых веществ, в том числе и некоторых нефтяных погонов, вращать плоскость поляризации светового луча. Свет называется,поляризованным, когда поперечные колебания светового луча совершаются в одной и той же плоскости, проходящей через самый луч. Плоскость, перпендикулярная плоскости колебаний, называется плоскостью поляризации. Некоторые минералы и растворы некоторых веществ обладают способностью поляризовать проходящий через них свет и изменять направление плоскости поляризации, или, как говорят, обладают способностью вращать плоскость поляризации. Так, например, раствор сахара поворачивает плоскость поляризации проходящих через него световых лучей, притом тем более, чем гуще раствор и чем больше длина проходимого лучами пути. [c.53]

    В настоящее время положение резко изменилось — опубликован целый ряд советских работ (Г. А. Амосов, А. Дж. Саттар-Заде) и зарубежных (М. Луи) об оптической активности. [c.53]

    Наконец, Энглер и Маркуссон выдвинули новую гипотезу оптической активности, объясняемой разложением фитостерина и холестерина. [c.54]

    При медленной перегонке холестерин дает продукт с сильным правым вращением. Если фитостерин и холестерин примешать к искусственной нефти , состоящей из оптически недеятельных элементов, и подвергнуть смесь перегонке с вакуумом, то получается продукт, вращающий плоскость поляризации, т. е. оптически активный продукт. [c.55]

    Оптическая активность нефти остается на сегодня одним из наиболее веских аргументов в пользу органического происхождения этой последней (см. главу IV). Действительно, проведенные исследования показали, что оптически активное органическое соединение получается или прямо из оптически активного исходного материала, связанного генетически с растительным или животным миром, или при том или ином участии такого материала. [c.55]


    И. Д. Зелинский (Избранные труды, том I. М.—Л., Изд-во АН СССР, 1941) с сотрудниками детально исследовал термокаталитические превращения фито- и холестеринов и показал, что эти левовращающие соединения дают целую гамму углеводородов, подобную нефтяной, характеризующуюся правым вращением. Было показано, что оптическая активность связана преимущественно с образующимися нафтеновыми углеводородами. [c.55]

    С этой точки зрения карбидная гипотеза как будто представляет довольно стройную и вполне химически обоснованную гипотезу, и, тем не менее, эта гипотеза встретила возражения, наиболее существенным из которых явилось следующее. Проф. Вальден (Рига) отметил забытый факт, что все полученные в результате неорганического синтеза нефти являются оптически неактивными, тогда как все природные нефти, за весьма малыми исключениями, оптически активны они вращают плоскость поляризации светового луча. Карбидная и вообще все другие минеральные гипотезы не могут дать удовлетворительного объяснения этого факта. Все попытки получить нз неактивных веществ активное оптическое вещество кончились полной неудачей. На основании всех этих фактов Вальден пришел к заключению о полной несостоятельности не только карбидной, но и других гипотез минераль- [c.304]

    Со временем выяснилось, что некоторые соединения отличаются друг от друга только своими оптическими свойствами. Одно из таких одинаковых по всем другим свойствам соединений вращает плоскость поляризации поляризованного света по часовой стрелке, другое — против часовой стрелки. Обычно имеется еще и третье соединение, которое вообще не вызывает вращения плоскости поляризации поляризованного света (оптически неактивно). Примером изомерных веществ, различающихся по оптической активности, могут служить открытые Берцелиусом (см. гл. 6) винсградная и винная кислоты. Виноградная кислота оптически неактивна, а винная кислота обладает в растворе правым вращением. Позднее была открыта винная кислота, обладавшая в растворе в тех же условиях равным по величине, но противоположным, левым вращением [c.86]

    Несомненно, молекулы трехмерны и образующие их атомы в действительности размещаются в трех измерениях. Расположив атомы таким образом, легко выявить ту самую асимметрию молекулы, которая обусловливает ее оптическую активность. Однако-как представить себе, что молекула трехмерна  [c.87]

    Поуп продолжил ЭТИ исследования и показал, что такая пространственно затрудненная молекула в целом может оказаться асимметричной и будет проявлять оптическую активность, хотя ни один из составляющих ее атомов сам по себе не является асимметрическим. [c.90]

    Однако решающей проверке теория Вант-Гоффа — Ле Беля подверглась в работах немецкого химика Эмиля Фишера (1852— 1919), занимавшегося изучением простых сахаров. Ко времени начала работы Фишеру было известно, что ряд сахаров имеет одну и ту же эмпирическую формулу eHjjOe и обладает многими сходными свойствами, но различается, в частности, по оптической активности. [c.90]

    Фишер показал, что в молекуле каждого из этих сахаров имеются четыре асимметрических атома углерода, т. е., согласно теории Вант-Гоффа — Ле Беля, они должны иметь шестнадцать оптически активных изомеров. Эти изомеры можно расположить в виде восьми пар в каждой такой паре изомеры вращают плоскость поляризо- [c.90]

    Оптическая активность — является также ценной характе — рист икой нефти и нефтепродуктов. Нефти в основном вращают плоскость поляризации вправо, однако встречаются и левовраща — ющие нефти, что, возможно, обусловлено наличием в них продуктов распада исходных нефтематеринских веществ — терпенов и стери — нов. [c.87]

    Холмберг [И] показал, что рацемизация оптически активных галогенов в растворе подчиняется суммарному кинетическому закону второго порядка, первого по отношению к галоген-иону и первого по отношению к алкилгалогену. Хьюз с сотр. [12] показали, что скорость обмена 2-октилио-дида с радиоактивным иодом в растворе ацетона в точности равна скорости инверсии, причем обе скорости подчиняются суммарному закону второго порядка. Это, конечно, вполне вероятно, если предположить, что обе реакции протекают по механизму 8 - 2 с обращением конфигурации  [c.474]

    Если центральный углеродный атом асимметричен и исходное вещество RX оптически активно, то продукт RY рацемизовап. (Следует ожидать, что нуклеофильный реагент Y может присоединяться к плоскому иону карбония [c.475]

    Интересный пример этого типа дает Грэм [14], который изучал скорость ацетолиза оптически активного З-фенил-2-бутилтозилата (сокращенное название эфира и-толуолсульфокислоты и-СНзСеН4 — ЗОдН) в ледяной уксусной кислоте  [c.476]

    Эритросоединение ЕТ дает эритроацетат ЕА с почти количественным сохранением оптической активности. В то же время оптически активный трео-тозилат ТТ дает рацемический трео-ацетат ТА. Этот поразительный результат можно объяснить различием в строении ионов карбония, образующихся в каждом из этих случаев  [c.476]

    В пользу предложенного механизма говорит тот факт, что бромирование и иодирование протекают с одинаковой скоростью. Дейтерный обмен также идет со скоростью, сравнимой по абсолютной величине. Всестороннее исследование оптически активного бто/)-бутилфенилкетона [50] С2Н5 — —СН(СНз)СОСбН5 показало, что катализированное кислотой иодирование, бромирование и инверсия идут с одинаковыми скоростями. Было показано также, что катализированные основаниями 00 дейтерирование и инверсия идут с одинаковыми скоростями. Эти результаты можно рассматривать [c.491]

    Эти исследования — наглядный пример использования стереохимических представлений в катализе. Они свидетельствуют о возможности существования на поверхности катализаторов наборов активных центров, оптимальных для катализа определенных молекул благодаря соответствию межатомных расстояний и углов кристаллической решетки катализатора и аналогичных параметров молекул субстрата. Естественно, что увеличение или уменьшение параметров решетки приведет к изменению геометрии активных центров, а следовательно, к росту или уменьшению скорости реакции в зависимости от улучшения или ухудшения соответствия между реакционным индексом молекулы субстрата и активным центром. Позднее различие каталитической активности гладкой поверхности металлических катализаторов, ступенчатых структур, выступов и пиков на ней наглядно продемонстрировал Соморджай (см. разд. У.5). Приведенные данные являются также серьезными доводами против представлений о гидрировании вдали от поверхности катализатора [15]. Следует также специально подчеркнуть, что представления о существовании на поверхности катализатора оптимальных активных центров получили подтверждение при изучении гидрогенолиза оптически активных соединений [16—20]. [c.13]

    Интерес к асимметрической гидрогенизации особенно возрос в связи с поиском новых методов синтеза оптически активных а-аминокислот. В основе асимметрической гидрогенизации лежит цис-присоединение водорода со стороны поверхности катализатора. Эти представления находятся в соответствии с мультиплетной теорией А. А. Баландина. При этом промежуточные по-лугидрированные формы не десорбируются в объем с поверхности катализатора и непосредственный акт гидрирования происходит в минимальном объеме реакционной [c.82]

    Изучение модельных реакций, в которых исходные вещества претерпевают минимальные изменения (орто-пара-конверсия водорода, конфигурационная изомеризация и т. п.), использование в качестве объектов исследования оптически активных соединений и меченых соединений в сочетании с новейщими физическими методами исследования самого катализатора являются новыми и перспективными подходами к выяснению тонких деталей реакций, протекающих на поверхности катализатора. [c.83]

    В течение длительного времени слабая оптическая активность некоторых, пстиллятов нефти рассматривалась как доказательство общепринятого теперь представлоиия о происхождении нефти из природного органического вещества. [c.81]

    Реакции оптически активных в го/ -бутилпроизводных с ароматическим кольцом были критически изучены Борвелом и сотрудниками [72]. Получаемый 2-фенилбутан был сильно рацемизовап — около 99%. Этот результат заставляет предположить, что реакция должна пдти через карбоний-ионный механизму, причем ароматическое соединение принимает лишь незначительное участие, если вообще принимает участие в стадии разрыва связи. Так как условия благоприятствуют механизму замещения, если он возможен, то представляется вероятным, что с вторичными алкил-производными предпочтительно будет идти реакция по карбоний-ионному механизму. В заключение можно сказать, что в реакции Фриделя-Крафтса механизм замещения, по-видимому, будет предпочтителен энергетически только для первичных галоидалкилов н родственных им производных, в то время как ионизационный механизм предпочтителен для вторичных и третичных алкилпроизводных. [c.441]

    Почти все сырые нефти обладают низкой оптической активностью. Вращение обычно правое, но в некоторых случаях оно меняет направленпе, редко его совсем нет. Сила вращения сконцентрирована в определенных фракциях, причем максимум лежит у соединений с молекулярным весом от 350 до 400, это максимум для всех сырых нефтей [157 — 159]. Присутствие оптически активных веществ в устойчивой природной нефти было сильным аргументом в защиту достаточно низкотемпературного происхождения нефти из органических исходных материалов. Сначала считали, что эти соединения являются производными стеринов. Более позднее исследование показывает, что это явление может быть отнесено к углеводородам, особенно к неаро.матическим поли-циклпческим [160]. [c.186]

    Анализатор 2 (также призма Николя) может вращаться вокруг оптической оси прибора. Вращением анализатора вокруг оси ирибора можгк) досл ичь ноложения, ири котором призмы Николя оказьпзаются скрещенными и проходящий свет гасится. Если между поляризатором и анализатором расположен оптически активный раствор, то скрещен- [c.356]

    Нефть вращает плоскость поляризации. Эта способность была открыта еще в 1835 г. Жаном Батистом Био. Ввиду того, что нефть не имела тогда никакого промышленного значения, это открытие было предано забвению, и только спустя 60 лет вопросом оптической активности нефтей занялись Сольтзин и ряд других крупных ученых как русских, так и иностранных. Из наших ученых над оптической активностью работали П. И. Вальден, Л., А. Чугаев, Ракузин и другие, а из немецких ученых — К. Энглер со своим учеником И. Маркуссоном. Причиной изменения плоскости поляризации, как известно, является присутствие так называемых асимметричных молекул, причем различаются молекулы с правым или левым вращением. Угол вращения, изменяющийся от нуля до максимальной величины, зависит от соотношения между молекулами правого и левого вращения. Нефть, как ряд ее фракций, большей частью вращает плоскость поляризации вправо. Нефть в этом отношении мало исследована .  [c.53]

    Относительно природы веществ, являющихся носителями оптической активности, высказывались различные предположения. Ракузин и Маркуссон считали, что носителями оптической активности нефти являются нафтеновые кислоты. Однако опыт с русским цилиндровым маслом, которое обрабатывалось едким кали для удаления нафтеновых кислот, показал, что если угол вращения плоскости поляризации до обработки составлял 11,2°, то после обработки он стал 10,4°, т. е. произошло уменьшение только на 0,8°. Как видно, причина вовсе не в нафтеновых кислотах. Предполагали, что активными нефтями являются те из них, которые содержат серу. Однако опыты с удалением серы из нефти не оправдали предположения Альбрехта, что носителями оптической активности могут быть углеводороды, кипящие в узких пределах. [c.54]

    Однако холестерин вращает плоскость поляризации влево, тогда как подавляющее большинство нефтей принадлежит к правовращающим. Как раз те нефти с о. Явы, которые двляются левовращающими, как оказалось, вовсе не содержат холестерина. Таким образом, вопрос о носителях оптической активности нефти следует считать открытым. [c.55]


Смотреть страницы где упоминается термин оптически активных: [c.52]    [c.476]    [c.476]    [c.80]    [c.186]    [c.180]    [c.355]    [c.355]    [c.356]    [c.53]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Оптическая активность

активное оптически активное



© 2025 chem21.info Реклама на сайте