Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы СО соотношение между оптическим

    Соотношения между оптическими свойствами отдельных молекул и оптическими свойствами кристаллов суммированы в табл, 14. [c.264]

    Чтобы проиллюстрировать отклонение от закона Ламберта — Бэра, вызванное паразитным светом, рассмотрим молекулу, поглощающую свет с длиной волны Предположим, что поглощение монохроматического излучения с длиной волны . — строго линейная функция концентрации при постоянной длине оптического пути. Определим соотношение между оптической плотностью и молярной концентрацией, если, например, 99% интенсивности проходящего через образец света имеет длину волны A1, а 1% интенсивности — длину волны А.2, причем Яг соответствует области спектра, в которой исследуемые молекулы не поглощают. Если концентрация вещества равна нулю, то все излучение достигает детектора и, следовательно, оптическая плотность равна нулю. Если же концентрация вещества равна 1/е/, то только 10% интенсивности излучения с длиной волны А.1 пройдет через образец. В случае исходного монохроматического излучения пропускание было бы равно 0,1, а оптическая плотность соответственно 1,000. Однако в присутствии 1% паразитного света общая интенсивность света, достигающего детектора, равна 10% интенсивности падающего излучения с длиной волны Xi плюс все излучение с длиной волны Яг. Пропускание при этом будет равно 0,109, а оптическая плотность не 1, а 0,963. Отклонения, вызываемые присутствием паразитного света, увеличиваются с ростом концентрации. Например, когда концентрация равна 2/е/, детектора достигает 1 % излучения с длиной волны A1 и все излучение с длиной волны Яг. В соответствии с этим пропускание будет равно 0,02, а поглощение — 1,699 вместо 2,000, как было бы при чисто монохроматическом излучении. Общий результат, который может быть получен с помощью рассмотренной выше модели, приведен на рис. 9.8 в виде графика зависимости оптической плотности от молярной концентрации вещества при постоянной длине оптического пути. [c.504]


    Хотя новейшие данные о строении молекулы вносят некоторые изменения в выводы Друде и величины, входящие в дисперсионную формулу, приобретают другой смысл, все же сначала следует обсудить соотношение между оптическими свойствами и строением молекулы, следующее из классической формулы. Дело в том, что расчеты по более точной современной теории еще не проведены для более сложных случаев, хотя основные черты их уже известны. [c.116]

    Основным условием оптической активности вещества (на молекулярном или кристаллическом уровнях) является то, чтобы структура данной молекулы или кристалла не была совместимой со своим зеркальным изображением. Это свойство непосредственно связано с конкретным типом симметрии молекул или кристалла. Только отсутствие центра, плоскости и переменных осей симметрии у молекулы или кристалла приводит к оптической активности последних. Молекулярные структуры обладающие оптической активностью, называются асимметрическими. Отсутствие у асимметричных молекул перечисленных элементов симметрии допускает существование энантиоморфных молекул, соотносящихся между собой как правая и левая рука. Второе условие оптической активности связано с количественным соотношением в смеси двух энантиоморфных молекул правых [О] и левых (Ь). Если в смеси присутствует одинаковое количество Ь- и О-форм данной молекулы, то никакого оптического вращения наблюдаться не будет. [c.35]

    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]


    Метод ЯМР представляет ценность для целого ряда структурных исследований, из которых можно выделить три основных направления. Спектр ЯМР может дать информацию о типах присутствующих в молекуле функциональных групп. Во многих случаях он может также указывать на стереохимические соотношения между близко расположенными соседними группами. В сочетании с данными, полученными с помощью других методов, спектр ЯМР дает возможность сделать вывод о структуре отдельных участков сложных молекул. Так, например, если с помощью химических и оптических методов удается свести решение структурной проблемы к небольшому числу возможных структур, то спектр ЯМР позволяет однозначно выбрать одну нз них. Однако лишь в небольшом числе случаев вся необходимая для структурного анализа информация была получена только из спектров ЯМР. [c.255]

    Во многих случаях процессы разложения и синтеза новых аналитически активных соединений и частиц протекают одновременно, так что существо химического анализа сводится в конечном счете к рекомбинации атомов и молекул с одновременной или последующей регистрацией характеристических сигналов протекающих процессов. При этом качественное своеобразие анализируемого объекта находит свое-выражение в интенсивных свойствах аналитического сигнала (частота излучения, потенциал выделения, положение максимального поглощения), а количественные соотношения между компонентами — в экстенсивных свойствах сигнала (плотность почернения, сила тока, оптическая плотность). [c.8]

    Систематических исследований механизма катализа с применением оптически активных соединений пока проводится недостаточно, и лишь в последнее время опубликован ряд работ [815], представляющих значительный интерес с точки зрения стереохимиче-ских соотношений между конфигурацией реагирующей молекулы и геометрией поверхности катализатора. [c.268]

    Изучавшееся с помощью Ю соотношение между катализируемым кислотами изотопным обменом и рацемизацией оптически активного егор-бутилового спирта [247] показало, что образующийся карбоний-ион неизменно реагирует с образованием продукта с обращенной конфигурацией. Такой результат, казалось бы, должен говорить скорее о протекании реакции через бимолекулярное переходное состояние. Приложение рассмотренного выше полуколичественного метода к данному случаю дает значение сольватационного числа п = 2. Найденное значение п хорошо согласуется с одним крайним воззрением в общей теории сольватации карбониевых ионов — с так называемой структурной гипотезой , согласно которой следует рассматривать лишь два центра сольватации (разд. 5.3.2). Предсказываемое этой гипотезой стереохимическое поведение иона карбония схематически представлено на рис. 6.1. Возникающий первоначально карбониевый ион координируется с уходящей группой и с молекулой растворителя. Этот ион может распасться либо с отщеплением молекулы растворителя, либо с отщеплением уходя- [c.206]

    При этом пренебрегаем асимметрией, наведенной молекулами растворенного вещества в молекулах растворителя. Более того, предположим, что в интересующей нас области спектра молекулы растворителя не поглощают света и, следовательно, а и % являются вещественными величинами. (Действительно, при измерениях оптического вращения или кругового дихроизма растворов практически удовлетворяется требование, чтобы используемые растворители были непоглощающими, так что это ограничение не является серьезным.) Если теперь знать соотношение между эффективными полями и электрическими и магнитным векторами Е и Н, то можно было бы с помощью уравнений (22), (26) и (30) вычислить электрическое смещение О и магнитную индукцию В, пользуясь выражениями [c.59]

    Общие теоретические взгляды Пастера, связавшие первые замечательные работы его с последующими работами, как химическими, так и биологическими, нас более интересуют. Определенное взаимодействие между микрокосмом химическим (молекула, химическая монада) и микрокосмом организованным (монада) сказалось на целом ряде явлений, принадлежащих к высшему порядку физико-биологических отношений в их зависимости от состава и химического строения вещества. Я разумею здесь способность микроорганизмов, реагируя на тела определенного строения, делать их оптически деятельными. Нет сомнения, что существуют строгие соотношения между динамическим состоянием молекулы, реагирующей на поляризованный луч, и определенным характером микроорганизма, реагирующего на оптически деятельный химический индивидуум. [c.470]

    Молекулярным спектром называют совокупность полос или линий в оптической (УФ, видимой, ИК) и микроволновой (МВ) областях электромагнитных волн, возникающих в результате изменения энергии молекул при поглощении, рассеянии или испускании электромагнитного излучения. Соответственно различают молекулярные спектры поглощения (абсорбционные), комбинационного рассеяния (КР) и испускания (эмиссионные). Молекулярные спектры, наблюдаемые в оптической области, называют оптическими, в МВ — микроволновыми. Вид и структура спектров определяются строением, энергетическими и электрическими свойствами молекул. Частоты молекулярных спектров соответствуют квантовым переходам между различными энергетическими уровнями энергии и подчиняются соотношению (13.3). [c.241]


    После того, как расщеплением рацемата или асимметрическим синтезом получено оптически активное вещество, всегда встает вопрос, является ли оно оптически чистым, т. е. состоит только из одного антипода или содержит и примесь другого. Только величины вращения оптически чистых веществ можно сравнивать друг с другом в тех случаях, когда стремятся установить связь между вращательной способностью молекулы и ее химическим строением. Изменения оптической чистоты вещества в ходе реакций могут дать важные сведения о механизме последних. Оценивая физиологическое действие антиподов, правильное соотношение их активности можно получить лишь при работе с оптически чистыми веществами. Наконец, при проведении расщепления просто [c.160]

    В-третьих, существует важная промежуточная область, когда взаимодействие носит преимущественно локальный и направленный характер, но химическая индивидуальность молекулы еще сохраняется или легко может быть восстановлена при нагревании, адсорбции вытеснителя и т. п. Сюда относится водородная связь, зх-комплексы и в предельном случае — взаимодействие с переносом заряда. Целесообразно назвать эти взаимодействия специфическими молекулярными, вкладывая в этот термин отмеченный ранее смысл (см., например, [2]). Эти взаимодействия вызывают столь сильные и отчетливые изменения в энергиях и в инфракрасных и электронных спектрах адсорбционных систем (иногда вплоть до появления спектров ЭПР), что квантовая химия может объяснить уже найденные и предсказать новые корреляции между этими эксперимептальными величинами. Здесь важно исследование соотношения локальных и коллективных взаимодействий, изучение влияния акцепторных и допорных центров, природы адсорбции оптических изомеров. Надо попытаться развить молекулярно-статистическую теорию п здесь, основав ее на доступных спектроскопических данных, включая далекую ИК-область и ЯМР, на исследованиях теплоемкости и на хотя бы качественных указаниях квантовохимической теории. [c.105]

    Изменение соотношения оптических плотностей полос гош-и транс-формы по мере заполнения монослоя на гидроксилированной поверхности кремнезема и перехода к полимолекулярной адсорбции (см. табл. 36), когда начинает возрастать взаимодействие молекул друг с другом и уменьшается относительный вклад специфического взаимодействия молекул дихлорэтана с гидроксильными группами поверхности, свидетельствует об уменьшении концентрации гош-формы во всем адсорбционном слое. Близость отношения оптических плотностей гош- и транс-формы при больших заполнениях поверхности к значению этого отношения для чистой жидкости указывает на близость состояния молекул в полимолекулярном слое и в капиллярном конденсате (в зазорах между частицами аэросила) к их состоянию в жидкости. [c.424]

    Особенностью электрических свойств твердых органических веществ является то, что в большинстве случаев их проводимость мала эти вещества относятся обычно к классу изоляторов или полупроводников. Исключение представляют вещества, у которых химическая ненасыщенность распространяется вдоль кристалла таким образом, что движение электронов происходит как бы внутри одной гигантской молекулы. Такого типа металлические свойства имеет графит по двум направлениям, хотя в третьем направлении он представляет собой молекулярный кристалл, являясь предельным членом в ряду ароматических углеводородов с постепенно возрастающим числом гексагональных колец. Электропроводность в направлении, параллельном молекулярным плоскостям, в этом случае в 100 раз больше, чем в перпендикулярном направлении. При проведении опытов на чистых монокристаллах при низких температурах удалось установить, что это соотношение увеличивается еще во много раз. Оптическая прозрачность монокристаллов, скажем, при 4°К для света, возможно даже в видимой части спектра, поляризованного в плоскости, перпендикулярной молекулярным плоскостям, также должна быть относительно большой, если в основном и возбужденном состояниях электроны совершают движение по я-орбитам. Такого типа переходы между основным и возбужденным состояниями еще не удалось наблюдать, так как обычно они замаскированы другими переходами разных типов. [c.660]

    Любое вещество, которое вращает плоскость поляризованного света, является оптически активным. Если чистое соединение оптически активно, его молекула е совмещается со своим зеркальным изображением. Если молекула совмещается со своим зеркальным изображением, соединение не вращает плоскость поляризованного света такое соединение оптически неактивно. Свойство объекта не совпадать со своим зеркальным изображением называют хиральностью. Если молекулу нельзя совместить с ее зеркальным изображением, она хиральна, а если можно, она ахиральна. Соотношение между оптической активностью и хиральностью эмпирическое, но тем не менее оно носит абсолютный характер не известно ни одного исключения и найдены многие тысячи примеров, подтверждающих правило (однако см. разд. 4.2). Хиральность (т. е. несовпадение с зеркальным изображением) является обязательным критерием наличия оптической активности это одновременно и необходимое, и достаточное условие [3]. Этот факт был использован в качестве доказательства при определении структуры многих соединений в свое время заключение о тетраэдрическом строении углеродного атома было сделано на основании гипотезы о справедливости упомянутого соотношения. [c.129]

    В настоящей книге много говорилось о молекулярной диссимметрии и приводилось немало примеров, когда оптическое вращение использовали в качестве метода для изучения молекулярной геометрии. Однако как с качественной, так и с количественной точки зрения почти не упоминалось основное соотношение между оптическим вращением и молекулярной диссимметрией, т. е. то, каким образом и в какой степени диссимметрия вызывает оптическое вращение. Это обусловлено историческими причинами, так как, хотя оптическое вращение было открыто в начале XIX столетия и к концу его стало мощным методом в руках химиков (см. гл. I), теоретическая трактовка этого явления сильно отставала, и лишь время от времени некоторые физики уделяли ей внимание. Прошло более ста лет, прежде чем Грэй, Маллеман, Борн и Бойс [1] стали разрабатывать молекулярную основу оптической вращательной способности, а удачные теории оптического вращения были предложены лишь недавно школами Куна [2], Кирквуда [3] и Эйрннга [4]. Эти теории позволили успешно предсказать конфигурацию (К)-(-1-)-бутанола-2 [2, 46], (Н)-(+)-2-эпоксибутана [36] и (Н)-(+)-1,2-дихлорпропана [36]. Также была правильно вычислена конфигурация (8)-(-Ь)-этилбензола-а-0 (гл. 3) [4е]. Более того, с помощью указанных теорий можно верно предсказать примерную величину оптического вращения . Однако в настоящее время, по-виднмому, не представляется многообещающим применение вышеупомянутых теорий вращения к более сложным молекулам [4 д, е]. Гораздо большего можно ожидать от теоретических расчетов, связанных с кривыми дисперсии оптического вращения (разд. 14-2). Кривые этого рода были успешно рассчитаны на основании данных о поглощении для таких сложных молекул, как 12-кетохолановая кислота [5а], так что в ближайшем будущем можно ожидать в этой области много интересных открытий [56—г]. Однако этот метод весьма сложен с математической точки зрения. [c.387]

    Нефть вращает плоскость поляризации. Эта способность была открыта еще в 1835 г. Жаном Батистом Био. Ввиду того, что нефть не имела тогда никакого промышленного значения, это открытие было предано забвению, и только спустя 60 лет вопросом оптической активности нефтей занялись Сольтзин и ряд других крупных ученых как русских, так и иностранных. Из наших ученых над оптической активностью работали П. И. Вальден, Л., А. Чугаев, Ракузин и другие, а из немецких ученых — К. Энглер со своим учеником И. Маркуссоном. Причиной изменения плоскости поляризации, как известно, является присутствие так называемых асимметричных молекул, причем различаются молекулы с правым или левым вращением. Угол вращения, изменяющийся от нуля до максимальной величины, зависит от соотношения между молекулами правого и левого вращения. Нефть, как ряд ее фракций, большей частью вращает плоскость поляризации вправо. Нефть в этом отношении мало исследована .  [c.53]

    Как уже было показано, наиболее важное наблюдаемое отличие одного энантиомера от другого связано с их различным действием на поляризованный свет. На протяжении более чем столетия после открытия оптической изомерии единственным неизменным способом обозначения различия между энантиомерами была ссылка на направление вращения плоскости света, с тех пор и используется ( + )- и (—)-номенклатура. Хотя уже давно было ясно, что вращение поляризованного света обусловлено различной конфигурацией молекулы, не было способа определения абсолютной конфигурации (т. е. истинного пространственного расположения групп в молекуле). Очень скоро было обнаружено, что нет простого соотношения между знаком вращения поляризованного света и конфигурацией молекулы. Так, правовращающий спирт мог образовать левовращающий ацетат и правовращающий бензоат или левовра-щающпй амии мог дать правовращающий протонированный катион. Существует немало подобных примеров, где реакции, не изменяющие конфигурацию у асимметрического центра, дают продукты с другой оптической активностью по сравнению с активностью исходного вещества. [c.200]

    Соотношение между значениями оптического враш,ения и диэдральных углов при гликозидной связи (см. выше) также применимо к флуктуируюш,им неупорядоченным конформациям, однако а этом случае получаемый результат соответствует взвешенному среднему для всех молекул в состоянии равновесия. Для некоторых типов связей, как, например, в целлобнозе и ее олигомерах, а также в лактозе, полученные данные свидетельствуют о том, что их углеводные остатки в растворе флуктуируют так, что конформации молекул близки к конформациям, суш,ествуюш,им в кристалле [c.297]

    Со времени открытия Био было предложено много теорий, объясняющих зависимость между оптической активностью и молекулярной структурой. Большое влияние на авторов этих теорий оказало первоначальное толкование, которое Френель (1822) дал вообще явлению вращения плоскости поляризации, Пдоскополяризованный луч, входя в оптически активную среду, расщепляется на два циркулярно и противоположно поляризованных луча, обладающих в этой среде различными показателями преломления. Поэтому на выходе из среды, когда из двух циркулярнополяризованных лучей снова образуется один плоскополяризованный луч, его плоскость поляризации оказывается повернутой. Электронные теории оптической активности берут начало с теории Друде (1904), Опираясь на идеи Френеля, Кун (1929) предложил теорию оптической активности, которая с успехом объясняла многие известные тогда факты, в том числе и в области абсорбции циркулярнополяризованного света. Однако, в конечном итоге, она разделила судьбу остальных, в том числе и более новых теорий, о которых Партингтон писал Связь между оптической активностью и молекулярной структурой, хотя в главных чертах и представляется очевидной на основе экспериментальных данных, оказалась трудно объяснимой с количественной точки зрения. Нельзя сказать, что предлагавшиеся многочисленные теории, пытавшиеся построить различные модели оптически активных молекул, пролили достаточно света на этот предмет [7, с. 335—336]. В этой области химики опирались главным образом на эмпирические соотношения как общего, так и частного характера, относящиеся к какой-либо группе органических соединений. [c.204]

    Такое правило указывает на наличие связи между возможностью существования веществ в виде разделяемых оптических изомеров и наличием спектроскопических переходов, порождающих эффекты Коттона в молекуле, имеющей только осевую симметрию, спиральная комбинация электрического и магнитного дипольных моментов должна быть неидентична своему зеркальному отображению. Один и тот же переход между двумя состояниями будет иметь противоположную спиральность в двух разных энантиомерных формах одной и той же молекулы. Все попытки установить соотношение между конфигурацией молекулы и ее спектральными свойствами были предприняты на основе такой связи. Как в классической, так и в квантовой теории оптической активности было принято, что промотирование электрона по правой спирали приводит к положительному эффекту Коттона (т. е. разность г, — е р положительна). На рис. 18 показано пространственное расположение трис- и бисхелатных молекул О-конфигурации. В рассматриваемых ниже опытах Мэйсон [66] показал, что в случае трисхелатных молекул О-конфигурации наблюдается положительный эффект Коттона для компоненты Е и отрицательный эффект для компоненты А. Этот вывод дает возможность устанавливать конфигурацию спектроскопическим методом в случае, если -переход в трисхелатной молекуле обладает положительной вращательной силой, молекула имеет О-конфигурацию. [c.176]

    Более полную информацию о механизме процесса можно получить из кинетических данных по тепловой денатурации — раствор ДНК нагревают в течение очень короткого времени и затем регистрируют изменения оптической плотности или полярографических характеристик 75-177 этом оказывается, что кинетическая картина превращения различна в зависимости от соотношения между температурой Т исходного раствора ДНК, температурой плавления данной ДНК Гщ и конечной температурой Гг- Если Т на 20—30° С ниже Гщ и если Гг не очень высока (на 5—10° С БЫШ6 Тщ), то фиксируемые изменения свойств молекулы начинаются после заметного индукционного периода Этот индукционный период исчезает при увеличении Т или Гг. Если уже при Тг молекула ДНК имеет некоторое количество деспирализованных звеньев, то при достаточно высоком значении Гг наблюдается стадия мгновенного увеличения степени деспирализации, характеризуемая моментальным увеличением оптической плотности, после чего следует быстрый, но поддающийся измерению процесс дальнейшего возрастания оптической плотности. Величина первоначального скачка увеличивается с увеличением Г] и Гг, и при достаточно высоких значениях Гг фиксируемая вторичная структура исчезает полностью на первой, мгновенной, стадии. Время завершения процесса, следующего за моментальной стадией (при условии достаточно большой Га ), приблизительно пропорционально квадра- [c.272]

    Соотношение между инвариантами тензора а и у и структурой молекулы заключено в сложных формулах теории дисперсии и поляризуемости. Эти величины следует поэтому рассматривать как эмпирические параметры, которые важны для объяснения структуры молекулы. В этом плане заслуживает внимания валентно-оптическая схема, согласно которой электрические свойства молекул, например дипольный момент и поляризуемость, являются просто суммой дипольных моментов и поляризуемостей отдельных валентных связей молекулы [297]. Концепция поляризуемости связей, согласно которой каждая из связей имеет характерную для нее поляризуемость, впервые предложена Мэйе-ром и Оттербейном и развита количественно Заксом, Вонгом и Денби [298]. Полезность этой концепции состоит в возможности прогнозирования на ее основе ряда величин. Например, если известны основные значения поляризуемости связей, скажем связей С—С и С—Н. то на основе конформационной модели можно [c.324]

    Розеифельда [38] дает правильную квантовомеханическую трактовку ДОВ любой оптически активной молекулы. Более поздние теории [42, 43] предлагают соотношения, устанавливающие связь между оптической вращательной силой и химическим строением. Одноэлектронная теория оптического вращения была использована для различных систем, приведенных последовательно в табл. 2 (например, насыщенные ароматические циклы). [c.24]

    Подведем некоторые итоги. Из изложенного следует, что как механические свойства полимеров в блоке и прежде всего высокоэластичность, так и специфическое поведение полимеров в растворах находят свое объяснение в гибкости длинных цепных образований, которыми являются макромолекулы полимеров. Иными словами, большие или меньшие участки полимерных цепей обладают независимой друг от друга подвижностью. Теоретическое истолкование наблюдаемых фактов можно поэтому осуществить на основе статистических представлений макромолекула может трактоваться как статистический ансамбль элементов с независимыми степенями свободы. Экспериментальное определение свойств отдельных макромолекул в растворах — их размеров, формы, оптической анизотропии, дипольных моментов и т. д.—дает позможность всесторонней пров рки статистической теории полимерных цепей. Задача последней состоит в вычислении названных параметров на основе имеющихся сведений о химическом строении макромолекул. В этом смысле теория макромолекул преследует те же цели, что и теория малых молекул, предназначенная для установления связи между различными молекулярными постоянными, например межатомными расстояниями, динольными моментами, поляризуемостью и т. д., и для вычисления этих постоянных. Теория малых молекул строится либо на квантовохимической, либо на полуэмнирической основе. Существующие в настоящее время методы квантовой химии недостаточно совершенны, и применение их сопряжено с (зчень громоздкими расчетами. Поэтому конкретные определения молекулярных постоянных и соотношений между ними обычно эффективно осуществляются с помощью полу-эмпирической теории, в то время как общие представления о природе этих постоянных имеют глубокое квантовомеханическое обоснование. В нолуэмпирическо теории малых молекул широко применяется валент- [c.40]

    Конфигурационные отнесения в ряду дифенила обеспечили основу дальнейшего более широкого изучения взаимосвязи между структурой и оптической вращательной силой дифенилы в отличие от обычных оптически активных соединений не имеют асимметрических атомов и существование конформационных энантиомеров определяется исключительно диссимметрией молекулы. В настоящее время принято, что любое рассмотрение зависимости оптической силы вращения от химического строения требует непременного описания или понимания эффекта Коттона [15]. В соответствии с этим автор в сотрудничестве с Джерасси (Стэнфордский университет) приступил к исследованию дисперсии оптического вращения дифенильных соединений. Ранее Джерасси [16] в серии блестящих работ удалось продемонстрировать, что знак и форма кривой ДОВ и в особенности эффект Коттона существенно отражают стереохимию, в том числе и абсолютную конфигурацию ближайших соседей оптически активного хромофора (см. следующий раздел). Эти исследования относились главным образом к кетонам по двум основным причинам оптически активные кетоны с известными абсолютной конфигурацией и конформацией в большом числе получаются из природных источников, и область п -> л -перехода карбонильной группы (около 290 ммк) характеризуется малой экстинкцией и допускает поэтому прохождение света при исследовании в спектрополяриметре. На основании этих работ было выведено правило октантов [17], устанавливающее соотношение между абсолютной конфигурацией или конформацией возмущающего окружения и знаком эффекта Коттона для зх -перехода карбонильной группы. [c.152]

    Большое внимание мы старались уделить рисункам, особенно в разделах, обычно наиболее трудно воспринимаемых (как, например, Оптическая изомерия и т. д.). Ряд рисунков, представляющих собой современные (стюартовские) модели органических молекул, отражающие реальные соотношения между размерами атомов, межатомными расстояниями и т. д., печатается впервые в отечественной учебной литературе (эти рисунки — фотографии моделей, изготовленных для кафедры органической химии Московского фармацевтического института). Также впервые печатаются рисунки, наглядно представляющие переход от молекулярных моделей к конфигурационным формулам пространственных изомеров (цис-транс- и зеркальных), а также ряд других рисунков. Считая, что в ряде учебников рисунки лабораторных установок часто бывают настолько схематизированы, что не дают реальных представлений, мы дали новые рисунки этих установок. Лишь единичные рисунки в настоящей книге заимствованы из других изданий. [c.5]

    Для получения информации о стереохимических особенностях молекул могут быть также применены хироптические методы. Например, сильное нарушение я->-я -перехода для карбоксилатного хромофора при кооперативном связывании ионов кальция поли-гулуронатом и полигалактуронатом согласуется с существованием такой области связывания, в которой катион расположен в непосредственной близости от орбиталей, не участвующих в связывании (что действительно можно предположить по аналогии с известными конформациями цепей) [32]. Широкое применение имеет эмпирическое соотношение [33] между значением оптического вращения и значениями основных конформационных переменных полисахаридной цепи, а именно диэдральных углов ср и ij) [см. формулы (1) и (2)]. Величину, известную как связевое вращение [Л]о, определяют, вычитая из значения молекулярного вращения углеводного остатка в цепи значение молекулярного вращения соответствующего метилгликозида. Для гликозидной связи, в образовании которой участвуют вторичные гидроксигруппы [как в (1)], ее определяют по уравнению (2). [c.296]

    Об участии поверхностных гидроксильных групп в стабилизации поворотного изомера именно гош-формы 1,2-дихлорэтана свидетельствует также спектр, полученный после адсорбции на предварительно метоксилированной поверхности того же аэросила. Наблюдаемое соотношение интенсивностей полос гош- и транс-формы в этом случае меньше, чем при адсорбции на гидроксилированной поверхности (см. табл. 36) и свидетельствует о значительно меньшем содержании в адсорбированном состоянии гош-формы. Это, очевидно, связано с устранением в результате метоксилирования поверхности аэросила специфического молекулярного взаимодействия между гидроксильными группами поверхности и атомами хлора молекулы дихлорэтана. В этом случае содержание транс-изомера даже больше, чем в исследованных растворах (см. табл. 36). С ростом заполнения поверхности и с переходом к преимущественно полимолекулярной адсорбции 1,2-дихлорэтана отношение оптических плотностей гош- [c.424]

    В то время (да и до нашего времени) невозможно было определить, в какой из этих реакций происходит обращение конфигурации, так как не были известны методы, позволяющие установить, какая из двух оптически деятельных яблочных кислот имеет ту же стеричсскую конфигурацию, что и исходное вещество — (—)-хлорянтарная кислота. Действительно, между нанравлснием оптического вращения данного соединения и его конфигурацией не всегда существует простое соотношение. Часто молекулы с тонодественной конфигурацией вращают плоскость поляризации света в противоположном направлении. Так, например, эфиры (—)-молочной кислоты являются правовращающими, хотя они, безусловно, обладают при асимметрическом атоме углерода той же конфигурацией, что и свободная кислота. У эфиров (—)-глицерино-вой кислоты тоже наблюдается изменение направления вращения по сравнению с направлением вращения свободной кислоты. Вращательная способность оксикислот меняется с изменением концентрации раствора, причем она отличается от вращательной способности их солей. При окислении оптически деятельного левовращающего амилового спирта сивушного масла образуется (+)-а-метилмасляная кислота, несмотря на то что в этой реакции (как п в приведенных выше реакциях этерификации) не происходит замещения при асимметрическом атоме углерода, и, следовательно, стерическая конфигурация остается неизменно . [c.140]

    В предыдущем разделе Остерхоф провел критическое обсуждение ряда концепций, лежащих в основе объяснения естественной и индуцированной вращательной способности молекул. В настоящем раздело будут рассмотрены вопросы, которые возникают при приложении указанных концепций к интерпретации экспериментальных данных по оптической активности естественно активных соединений с целью получения из этих данных информации о структуре оптически активных молекул. Точнее, будут доказаны две полезные теоремы и отмечены их возможные применения. Первая из этих теорем (теорема I) устанавливает связь между формой полосы поглоп ения разрешенного электрического дипольного перехода и формой соответствующей полосы поглощения, связанного с круговым дихроизмом в сочетании с соотношениями Кронига — Крамерса эта теорема часто позволяет легко строить кривые дисперсии оптического вращения по экспериментальным данным 1Г0 поглощению. Вторая теорема (теорема II) касается подбора оператора вращательной силы перехода, который бы гарантировал независимость вращательных сил переходов от выбора начала координат при расчетах с неточными волновыми функциями. Ввиду имеющихся в настоящее время трудностей построения точных волновых функцргй необходимость в такого рода гарантиях совершенно очевидна. [c.260]


Смотреть страницы где упоминается термин Молекулы СО соотношение между оптическим: [c.221]    [c.144]    [c.140]    [c.515]    [c.373]    [c.61]    [c.50]    [c.18]    [c.33]    [c.144]    [c.318]    [c.157]    [c.285]   
Количественная молекулярная спектроскопия и излучательная способность газов (1963) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте