Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность растворов коэффициент

    Предложен "- быстрый и удобный метод для проверки результатов при стандартных анализах природных вод и рассолов. Вычисляется ряд коэффициентов для имеющихся в растворе ионов. Произведение из такого коэффициента и концентрации соответствующего иона представляет собой долю этого иона в удельной электропроводности раствора. Коэффициенты помещены во втором столбце табл. 2. В третьем столбце даны концентрации ионов, определенные другими аналитическими способами в сильно разбавленных водных растворах, по составу близких к анализируемым. Числа четвертого столбца получены умножением величин концентрации на соответствующий коэффициент. Произведение есть не что иное, как рассчитанная удельная электропроводность пробы. Измеренная удельная электропроводность может отклоняться не более чем на 2%. Если точность меньше, это указывает на ошибки в одном или нескольких анализах. Коэффициенты рассчитывались при допущении, что общая удельная электропроводность составляет величину около 100 шо. Таким образом, если проба имеет электропроводность значительно выше, ее следует разбавить дистиллированной водой перед выполнением контрольного опыта. [c.19]


    T. e. произведение подвижности (a следовательно, и электропроводности) на коэффициент вязкости является величиной постоянной и, следовательно, температурный коэффициент подвижности должен быть равен величине, обратной температурному коэффициенту вязкости. Действительно, температурный коэффициент подвижности большинства ионов в водных растворах равен 2,3—2,5%, в то время как величина, обратная температурному коэффициенту вязкости воды, равна 2,43%. [c.438]

    Смолуховский разработал теорию потенциала протекания, согласно которой потенциал тем выше, чем больше ионов диффузионного слоя выносится из капилляра в единицу времени. Количество этих ионов пропорционально -потенциалу и объемной скорости жидкости. Последняя зависит от приложенного давления р и от коэффициента вязкости Т1. Учитывая, что Е зависит от удельной электропроводности раствора х, получим  [c.167]

    АКТИВНОСТЬ — величина, характеризующая термодинамические свойства вещества в растворах. Свойства растворов (упругость пара, температура замерзания и кипения и т. д.) зависят от величин А. компонентов раствора. Отношение А. к концентрации называется коэффициентом активности, который определяется практически измерением упругости пара, температуры кипения и замерзания, электропроводности растворов. [c.13]

    Таким образом, зная коэффициент протекаемости мембраны О, ее площадь А, а также вязкость г и электропроводность раствора X и определив электросопротивление мембраны Яа, можно найти средний радиус пор. [c.62]

    Нарушение количественных соотношений теории Аррениуса из-за пренебрежения ион — ионным взаимодействием проявляется также в том, что различные методы определения степени диссоциации а дают несовпадающие результаты. Так, а можно рассчитать по уравнению (1.6), зная изотонический коэффициент Вант-Гоффа. Далее, поскольку электропроводность раствора зависит от концентрации свободных ионов и, следовательно, от степени диссоциации, то а можно определить по измерению электропроводности. Наконец, как следует из электрохимической термодинамики, разность потенциалов на концах равновесной электрохимической цепи связана с концентрацией ионов, участвующих в установлении электрохимического равновесия. Поэтому иногда степень диссоциации а можно было рассчитать по измерениям разности потенциалов соответствующей цепи. Расхождения в величинах а, рассчитанных тремя указанными методами, оказываются весь- [c.16]


    Нарушение количественных соотношений теории Аррениуса из-за пренебрежения ион-ионным взаимодействием проявляется также в том, что различные методы определения степени диссоциации а дают несовпадающие результаты. Так, а можно рассчитать по уравнению (1.6), зная изотонический коэффициент Вант-Гоффа. Далее, поскольку электропроводность раствора зависит от концентрации свободных ионов и, следовательно, от степени диссоциации, то а можно определить по измерению электропроводности. Наконец, как следует из электрохимической термодинамики разность потенциалов на концах равновесной электрохимической цепи связана с концентрацией ионов, участвующих в установлении электрохимического равновесия. Поэтому иногда степень диссоциации а можно рассчитать по измерению разности потенциалов соответствующей цепи. Расхождения в величинах а, рассчитанных тремя указанными методами, оказываются весьма существенными, особенно для растворов сильных электролитов. Для концентрированных растворов сильных электролитов последний метод иногда приводит к не имеющим физического смысла значениям а> 1. [c.20]

    Удельная электропроводность и удельное сопротивление зависят от температуры. Повышение температуры увеличивает электропроводность и уменьшает сопротивление растворов электролитов. Температурные коэффициенты электропроводности и вязкости водных растворов близки по своей величине, но обратны по знаку. Поэтому электропроводность растворов измеряют при постоянной [c.90]

    РАБОТА 30. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ЭЛЕКТРОПРОВОДНОСТИ РАСТВОРА ЭЛЕКТРОЛИТА [c.106]

    Как вычислить константу диссоциации слабого электролита и произведение растворимости труднорастворимого электролита исходя из электропроводности раствора Как вычислить коэффициент диффузии с использованием предельных абсолютных скоростей ионов  [c.113]

    Таким образом, точка резкого излома кривой зависимости оптической плотности е от объема добавленного неполярного вещества V соответствует образованию насыщенного раствора, т. е. указывает на величину солюбилизирующей способности ПАВ. Эту величину можно определить и измерением понижения давления пара углеводорода, коэффициента преломления, электропроводности раствора и др. [c.246]

    Вальден установил, что в ряде гидроксилсодержащих растворителей, даже со значительно отличающимися диэлектрическими проницаемостями, большинство солей имеет значительный коэффициент электропроводности. В этих растворителях, как и в воде, в не очень концентрированных растворах коэффициент а для большинства солей близок к единице и растворенные электролиты полностью диссоциированы. [c.108]

    Коэффициент i, физический смысл которого Вант-Гофф не выяснил, зависит от природы раствора и его концентрации, но для одного и того же раствора значение i одинаково во всех четырех приведенных уравнениях. Аррениус установил, что подобно закономерностям изменения эквивалентной электропроводности растворов солей, кислот и оснований коэффициент i растет при разбавлении раствора. [c.263]

    Подстановка изотонического коэффициента в уравнения (VI.1) — (VI.3) также позволила использовать их для любых растворов. Объяснение причин электропроводности растворов электролитов и физического смысла изотонического коэффициента было получено после открытия электролитической диссоциации. [c.152]

    Для повышения точности определения вводят поправочный коэффициент на разбавление А = [Уо + У)1Уа и определяют электропроводность раствора, приведенную к первоначальному объему А-МЯ). После этого строят кондуктометрическую кривую в координатах электропроводность раствора (ож- сж- ) — объем титранта (мл). [c.457]

    Равновесие гидролиза было изучено физико-химическими методами (коэффициент распределения определение давления хлора, растворимости гидрата хлора, электропроводности растворов криосконический метод и т. д.) и установлено, что степень гидролиза зависит от температуры, концентрации и избытка продуктов реакции. [c.603]

    При бесконечном разбавлении раствора коэффициент электропроводности приближается к единице. По правилу Кольрауша эквивалентная электропроводность равна сумме электропроводностей отдельных иоиов  [c.117]

    Цель работы состоит в определении температурных коэффициентов электропроводности растворов сильных электролитов в различных температурных интервалах. [c.122]

    Аррениус предполагал, что распределение ионов в растворе остается хаотичным, как в смесях идеальных газов, допускал, что основные свойства растворов меняются пропорционально числу ионов (или общему числу частиц растворенного вещества). Например, электропроводность раствора, согласно Аррениусу, пропорциональна числу ионов и может служить мерой степени диссоциации. Однако при значительных концентрациях ионов в растворе скорость движения ионов в электрическом поле при данном градиенте потенциала уменьшается с ростом концентрации вследствие взаимодействия с ионами противоположных знаков, поэтому электропроводность не может служить мерой степени диссоциации. Опыт показал далее, что константы диссоциации резко изменяются с концентрацией, т. е. не являются константами. Степень диссоциации, вычисленная из электропроводности, существенно отличается от найденной для концентрированных электролитов по изотоническому коэффициенту. Имеются и другие факты, указывающие на то, что степень диссоциации сильных электролитов значительно выше вычисленной по Аррениусу. Так, каталитическое действие ионов Н3О+ в сильных электролитах изменяется пропорционально общей концентрации растворенного вещества, что указывает на независимость степени диссоциации от концентрации. [c.61]


    При бесконечном разбавлении раствора коэффициент электропроводности приближается к единице, так как [c.110]

    Следует заметить, что удельная и молярная электропроводности растворов электролитов возрастают при повышении температуры. Это обусловлено увеличением скорости движения ионов в связи с понижением вязкости растворов и уменьшением сольватации. Для многих катионов и анионов температурные коэффициенты изменяются в диапазоне от 0,015 до 0,025. Поэтому с повышением температуры на 1°С электропроводность увеличивается на [c.150]

    Заметим также, что при проведении кондуктометрического титрования всегда необходимо вводить поправку на разбавление, чтобы избежать серьезных ошибок. Такая корректировка основана на допущении, что электропроводность раствора линейно зависит от степени разбавления. Это не всегда выполняется для реальных растворов, но если коэффициент разбавления достаточно мал, то указанную корректировку можно считать приемлемой. Для уменьшения коэффициента разбавления концентрация титранта должна в десять и более раз превышать концентрацию титруемого раствора. [c.164]

    Опираясь на сформулированные и обоснованные в работе [562] условия появления в системе отрицательного температурного коэффициента электропроводности, можно подбирать компоненты и состав смешанного растворителя таким образом, чтобы достаточно высокая электропроводность раствора достигалась при возможно более низкой температуре (что весьма выгодно с точки зрения эксплуатации и техники безопасности при работе с электролитной композицией). [c.131]

    Таблицы проверенных значений осмотических коэффициентов и коэффициентов активности перхлората магния опубликованы Стоксом в 1948 г. Была измерена электропроводность растворов перхлората магния в н-пропиловом и изопропиловом спиртах , в системе метанол—ацетон , в воде и в ацетоне, метиловом спирте и в нитрометане . Определена также электропроводность растворов перхлората кальция в ацетоне . [c.50]

    Равновесие газ — жидкость Равновесие твердое — газ Равновесие жидкость — жидкость Криоскопические и эбуллиоскопические константы Свойства гомогенных жидких растворов Плотность растворов Коэффициенты активности Энергетические свойства растворов Теплопроводность растворов Электропроводность растворов и числа переноса Вязкость растворов Поверхностное натяжение растворов Показатели преломления растворов Электродные процессы [c.14]

    Дакар с сотруд. [75] исследовал экстракцию слабой рени-евой кислоты ТБФ и метилэтилкетоном (МЭК) из водных растворов, содержащих соли ЫаС1 и МаМОз. Показано,, что коэффициент распределения увеличивается с ростом концентрации кислоты в водной фазе, что связано с ассоциацией НКе04 в органической фазе. Ассоциация кислоты, вероятно, вызвана образованием водородных связей образуются в ТБФ в основном димеры, что подтверждается наличием максимума на кривой зависимости электропроводности раствора кислоты в ТБФ от ее концентрации. В присутствии солей наблюдаются более сложные зависимости. Это объясняется тем, что в органическую фа,зу переходит не только кислота, но и ее соль. [c.19]

    В растворах сильных электролитов при уменьшении концентрации эквивалентная электропроводность меняется не так резко, как для слабых электролитов. Чем больше заряд иона, тем значительнее изменения эквивалентной электропроводности с концентрацией. Отношение электропроводности при концентрации с к предельной эквивалентной электропроводности называется коэффициентом электропроводности (табл. Б.1). Величины ионной электропроводности аддитивны как для сильных, так и для слабых электролитов [уравнение (489)] . Для сильных электролитов это оправедливо также и в разбавленных растворах, если учитывать ионную силу. [c.330]

    Ион-ионное ваимодействие, которое в значительной мере предопределяет коэффициенты активности в растворах электролитов, существенно отражается ина их электропроводности. Электропроводность раствора электролита обеспечивается потоками ионов, возникающими под действием градиента электрического потенциала, т. е. потоками миграции. Во избежание осложнений, связанных с одновременной диффузией, электропроводность изучают с помощью переменного тока при этом ионы колеблются около некоторого среднего положения и grad Hi = 0. [c.84]

    Задания. 1. Определить удельную и эквивалентную электропроводности и коэффициент электропроводности водных растворов хлорида натрия разных концентраций. 2. Вычислить эквивалентную электропроводность раствора при бесконечном разведении и константу А в уравнении (VIII.28), используя график Хс=1(Ус)т. [c.107]

    Поведение сильных электролитов в растворах не соответствует их полной ионизации, что обнаруживается экспериментально. Так, для растворов хлорида натрия, который полностью распадается на ноны, следовало бы ожидать, что изотонический коэффициент i 2. Однако этого не наблюдается. Только в предельно разбавленных растворах Na l значение i приближается к двум. Эквивалентная электропроводность растворов сильных электролитов не остается постоянной при изменении концентрации, как этого можно ожидать при полной диссоциации, а увеличивается при разбавлении растворов. [c.268]

    Критерием пригодности электролитической ячейки для кондуктометрнческого титрования служит постоянство константы сосуда в области измеряемых сопротивленик. Однако следует учитывать, что константа сосуда измеряется при пэстоянном объеме жидкости в ячейке, а при титровании объем раствора в ячейке увеличивается. Поэтому целесообразно использовать д 1я кондуктометрического титрования ячейки, константа сосуда которых не зависит от объема жидкости в ячейке- Кроме того, измеренная в процессе титрования электропроводность раствора вследствие его разбавления всегда несколько отличается от электропроводности, которая наблюдалась бы при постоянном объеме. Для уменьшения ошибки в величине электропроводности раствора вследствие разбавления в процессе кондуктометрического титрования концентрация титранта должна быть по крайней мере в 10 раз выш , чем у титруемого раствора. Ошибку можно уменьшить, если привести электропроводность к постоянному объему путем использования поправочного коэффициента разбавления А)  [c.100]

    При измерении концентрации с.гедуот иметь в виду, что электропроводность растворов изменяется е температурой. Значе-ьие температурного коэффициента растворов составляет 1,5—2,5% на ГС. При малых отклонениях от 18°С эта зависимость может быть выражена формулой [c.396]

    Коэффициент диффузии электролита в полимере можно достаточно просто определить из данных по кинетике его десорбции из предварительно насыщенного образца. За ходом этого процесса наблюдают по изменению электропроводности раствора, в который переходит электролитОднако при использовании этой методики также встречаются затруднения, связааные со встречной диффузией воды. Например, при погружении полиэтилена, предварительно выдержанного в концентрированной соляной кислоте, в воду последняя блокирует в полимере хлористый водород и десорбция при невысоких температурах практически не происходит . [c.207]

    Плодотворность подхода Бьеррума при условии подходящего выбора d была продемонстрирована Гуггенгей-мом [24] путем сравнения с результатами точного численного решения уравнения для одно-одно- и двух-двухва-лентных электролитов различных ионных диаметров. Таким же образом он показал, что одинаково хорошее согласие может быть получено при значительном интервале изменения пар d и /(. Для водного раствора двухдвухвалентного электролита величина = 10 А так же хорошо описывает экспериментальные данные, как и величина d = 14,3 А, полученная из уравнения (34), но при меньших значениях d соответствие значительно ухудшается. При = 10 А на 20% больше, чем при Н = 14,3 А. Чем меньше й, тем меньше ионов / насчитывается в непосредственном окружении и больше — на далеком расстоянии. Это приводит к увеличению а и уменьшению у, но произведение ау почти не изменяется. Следовательно, изучение электропроводности или коэффициентов активности не может являться очень точным способом определения степени ассоциации ионов. Это вообще характерно для такой ситуации, когда экспериментальные данные описываются двухпараметрической функцией. [c.259]

    Усанович и Сумарокова построили диаграмму электропроводности для растворов с концентрацией О—100% H IO4 при 50 °С. Они получили также частные кривые для температур 20 и 60 °С. При рассмотрении кривых электропроводности, температурных коэффициентов электропроводности и зависимости произведения вязкости на электропроводность от концентрации эти авторы сделали заключение, что в жидкой фазе присутствуют MOHO- и дигидраты хлорной кислоты. [c.28]

    Коэффициенты преломления кристаллов перхлората калия составляют 1,4717 1,4724 и 1,476 молекулярная рефракция равна 15,37 см " . Джонс определил электропроводность, диссоциацию и температурный коэффициент электропроводности водных растворов перхлората калия при О—65 °С, а Дено и Перизолло — коэффициенты активности. Измерена электропроводность растворов перхлората калия в диметнлформамиде , цианистом водороде и гидразине .  [c.44]

    Были найдены также следующие основные кальциевые соли ЗСа(0Н)2 Са(С104)2-12Н.,0 и Са(0Н),-Са(СЮ,).2-2—4 0 и установлена их кристаллическая структура . Опубликованы данные о коэффициентах адиабатического сжатия водных растворов перхлоратов кальция и стронция. Измерена электропроводность растворов перхлората стронция в системе метанол—ацетон . [c.50]


Смотреть страницы где упоминается термин Электропроводность растворов коэффициент: [c.260]    [c.282]    [c.101]    [c.76]    [c.14]    [c.197]    [c.212]    [c.54]    [c.54]   
Физическая и коллоидная химия (1960) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент растворов

Коэффициент электропроводности

Электропроводность растворов ПАВ



© 2024 chem21.info Реклама на сайте