Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа слабых кислот и основани

    При титровании слабых кислот слабыми основаниями (или наоборот) кислотная часть кривой титрования отвечает титрованию слабой кислоты сильным основанием. Щелочная часть кривой титрования совпадает с кривой титрования слабого основания сильной кислотой. Для точки эквивалентности величину pH находят из уравнения константы гидролиза соли следующим способом. [c.270]


    Катионы сильных оснований N3+, a +, Ва + и анионы сильных кислот С1, 505 не принимают участия в этих реакциях, поскольку не могут образовать с ионами воды и ОН малодиссоциированных соединений. Таким образом, водные растворы уксуснокислых солей (ацетатов), образованных сильными основаниями, имеют щелочную реакцию, а растворы аммониевых солей сильных кис лот — кислую реакцию. В случае ацетата аммония и катион, и анион принимают участие в реакции гидролиза, однако раствор сохраняет нейтральную реакцию, так как образующиеся уксусная кислота и гидроксид аммония — электролиты равной силы (с. 127), В других случаях, например при гидролизе NH4 N, для определе ния характера раствора необходимо сопоставить константы диссоциации слабого основания и слабой кислоты, образующихся при гидролизе соли. [c.130]

    Соли слабых кислот и сильных оснований. Гидролиз. как константа гидролиза. [c.206]

    КИСЛОТЫ и ее соли всегда больше, чем буферная емкость воды, раствора соли, раствора сильной кислоты или сильного основания, для которых справедлива формула (I-I7). Величина р в этом случае будет зависеть от константы диссоциации Л нл слабой кислоты. [c.42]

    Поэтому при вычислении pH здесь исходят из уравнения константы ионизации соответствующей слабой кислоты. Для расчета кривой титрования необходимо вывести три формулы а) расчет [Н+] (pH) до титрования, т. е. в растворе слабой кислоты б) расчет [Н+] (pH) в процессе титрования, когда в растворе присутствует слабая кислота и ее соль и, наконец, в) расчет [Н+] (pH) в точке эквивалентности, когда в растворе находится только соль слабой кислоты и сильного основания. Прежде всего рассчитаем [Н+] и pH в растворе слабой кислоты НАп. Кислота ионизирует в растворе  [c.261]

    Эти соображения имеют общий характер, и, следовательно, для решения вопроса о том, какую реакцию будет иметь водный раствор гидросоли, образованной сильным основанием и двухосновной слабой кислотой, следует сопоставить константу гидролиза гидросоли и вторую константу диссоциации кислоты. [c.135]

    Хлорсеребряный электрод хорошо воспроизводим и довольно прост в изготовлении. Он применяется как внутренний вспомогательный электрод в стеклянных электродах и реже как внешний вспомогательный электрод в элементах типа (IX. 1). Благодаря тому, что хлорсеребряный электрод мало подвержен побочным реакциям, он нашел широкое применение в элементах без жидкостного соединения, где используется не только для изучения термодинамических свойств растворов хлоридов, но также для точного определения констант диссоциации слабых кислот, оснований и амфолитов [137, глава 15]. Неизменность электродной реакции [c.247]


    Ослабление силы кислот в уксусной кислоте обусловлено не только ее малой основностью, но и ее низкой диэлектрической проницаемостью. На это указывает то обстоятельство, что сила бромистоводородной кислоты больше, чем хлористоводородной, а также и то, что в муравьиной кислоте (диэлектрическая проницаемость равна 57), несмотря на ее еще более сильные протогенные свойства, галогеноводородные кислоты сильно ионизированы, даже при малых разбавлениях. В муравьиной кислоте, как в кислом растворителе, сильно диссоциированы также слабые основания. На такую роль диэлектрической проницаемости указывает близость констант диссоциации кислот, оснований и солей в уксусной кислоте (табл. 25). [c.280]

    Гидролиз соли, образованной слабой кислотой НА и сильным основанием, характеризуется константой гидролиза Кг- [c.149]

    Титрование сильной кислоты (щелочи) в присутствии слабой кислоты (основания) осуществимо с точностью, зависящей от константы диссоциации соответствующего слабого электролита. Расчетом можно показать, что константа диссоциации слабой кислоты должна быть равной 10 , чтобы была обеспечена при этом точность ( 0,1 7о), с которой определяется сильная кислота (при условии равенства их начальных концентраций 0,1 М). [c.125]

    Кривая титрования смеси сильной и слабой кислот (оснований), представляющая сочетание кривых рис. Д.134, а и Д.134, в, изображена на рис. Д.134, г. На практике для дифференцированного титрования. кислот (оснований) в их смесях константы диссоциации кислот (оснований) должны существенно различаться. В противном случае на кривых наблюдаются большие плавные изгибы, что не иозволяет четко опре- целить точку эквивалентности. (Каким был бы ход кривой титровании слабой кислоты слабым основанием ) [c.325]

    Условия вытеснительного титрования такие же, как в прямом титровании смеси сильной и слабой кислот (оснований) константы диссоциации вытесняющей сильной кислоты (основания) и- вытесняемой слабой кислоты (основания) должны существенно различаться. [c.326]

    В случае неполной нейтрализации слабой кислоты (слабого основания) pH вычисляют, пользуясь выражением для константы диссоциации слабой кислоты (основания)  [c.60]

    Если имеет место полная нейтрализация слабой кислоты (основания), то pH рассчитывают по константе диссоциации сопряженного основания (кислоты)  [c.61]

    Раздельное титрование смеси сильной и слабой кислот (оснований) возможно при условии, что константа диссоциации слабой кислоты (основания) находится в пределах (рис. 13.7). [c.221]

Таблица 2.3. Зависимости, связывающие константу гидролиза Кг с ионными произведением воды Кв и константой диссоциации слабой кислоты (основания) Таблица 2.3. Зависимости, связывающие <a href="/info/2442">константу гидролиза</a> Кг с <a href="/info/2472">ионными произведением воды</a> Кв и <a href="/info/1754319">константой диссоциации слабой кислоты</a> (основания)
    Таким образом, кислота или основание с рК, например, около 8 в разбавленных водных растворах, не содержащих других кислот или оснований, диссоциирует максимум на 9%. Удовлетворительное приближение к максимальной степени диссоциации наблюдается при концентрациях около 10 моль л, дальнейшее разбавление раствора (при рК 8) не способно заметно увеличить степень диссоциации. Это объясняется тем, что в очень разбавленных растворах диссоциация слабой кислоты (основания) подавляется водородными (гидроксильными) ионами воды. По отношению к разбавленным растворам слабых кислот (оснований) вода способна проявлять свои кислотные (или основные) свойства. Чем меньше концентрация слабого электролита в растворе и чем меньше его константа диссоциации, тем сильнее влияние воды на степень диссоциации. Степень диссоциации в очень разбавленных растворах можно изменить только путём изменения pH или температуры. [c.26]

    Иной метод определения слабых кислот основан на их титровании растворами слабых оснований, но при условии, что величины констант ионизации определяемой кислоты и применяемого основания приблизительно равны f . При этом условии соль, находящаяся в растворе в точке эквивалентности, независимо от исходной концентрации кислоты, будет всегда сообщать раствору pH, близкое или равное 7. [c.177]

    Для солей, образованных слабой кислотой и слабым основанием, константа гидролиза связана с константами диссоциации [c.259]

    Способ определения константы распределения слабой кислоты основан на использовании уравнения [c.121]

    Типичные кривые титрования слабыми кислотами оснований различной силы до точки эквивалентности аналогичны кривым титрования, полученным при использовании сильных кислот. Отличие заключается в том, что после точки эквивалентности электропроводность не изменяется. Значения констант диссоциации слабых электролитов, лимитирующие возможности определения, совпадают с данными, приведенными для случаев титрования кислот. Определения возможны, если сумма р/Сь титруемого основания и р/(а кислоты, используемой для нейтрализации, меньше или равна 12. [c.40]


    Метод СФ-титрования позволяет использовать реакции образования малоустойчивых комплексов, реакции нейтрализации слабых кислот и оснований, реакции окисления — восстановления систем с малой константой равновесия, так как для нахождения К. Т. Т. можно применять экстраполяцию участков кривых, соответствующих избытку титруемого иона и реагента (полное смещение равновесия реакции в одну сторону, поэтому зависимость D — f ) прямолинейна). [c.478]

    Сильные и слабые основания. Сопряженные пары кислота-основание. Константа диссоциации основания К . Соотношение [c.206]

    Концентрацию ионов водорода (гидроксила) в растворе слабой кислоты (основания) в присутствии ее соли можно вычислить по следующей приближенной формуле [Н ] = КС/а (для основания соответственно [ОН ) = КС/а), где К — константа диссоциации, С — концентрация кислоты (основания) и о — концентрация соли. Например, для 0,1 н. раствора уксусной кислоты, содержащего одновременно Доо нормального веса (Л =Л1=82) СНзСООНа в литре, концентрация иона водорода будет равна [№] = 0,1 - 2- Ю /0,01 = 2-10 , т. е. 0,0002 г-ион/л. Так как тот же 0,1 н. раствор уксусной кислоты в отсутствие соли содержит 0,0014 г-ион водорода (доп. 21), видим, что прибавление даже такого ничтожного количества соли, как [c.188]

    Соответственно константа гидролиза соли, образованной сильным основанием н слабой трехосновной кислотой, равна ионному произведению воды, деленному на третью константу диссоциации кислоты  [c.134]

    Соотношения, связывающие константу гидролиза с константами диссоциа ции кислоты и основания, легко получить пз выражения константы гидролиза В .1ведем первое из них, относящееся к случаю слабой кислоты и сильного основания. Для этого учтем, что основание МОН, от которого образована сол МЛ, — сильное, т. е. диссоциирует нацело. Поэтому [c.260]

    Благодаря отсутствию диффузионного потенциала цёпп без переноса широко применяются для определения многих свойств растворов электролитов. Во второй главе и частично в пятой и шестой главах мы ул е подробно рассмотрели применение цепей без переноса для оценки свойств сильных электролитов— концентрационных коэффициентов активности 7 и единых нулевых коэффициентов активности Уо. Кроме того, цепи без переноса широко применяются для определения свойств слабых электролитов. С их помощью определяются константы диссоциации кислот, оснований и солей, ионное произведение среды и т. д. [c.741]

    Константа ионизации основания МеОН равна 1 10" . Pa twixarb и построить кривую титрования 0,1 н. раствора его соли МеС1 0,1 н. растворолГ ОН и сравнить полученную кривую с кривой титрования 0,1 н. раствора слабой кислоты НАп с константой ионизации I-10" . С какими индикаторами можно прово.тить эти титрования  [c.293]

    Изменение соотношения Кз/Кнап еще больше по сравнению с изменениями соотношений констант диссоциации кислот и оснований улучшает условия титрования, если соотношение Кз1Кнап уменьшается. Например, указанное соотношение может уменьшаться в десятки тысяч раз в растворителях, имеющих малые значения Кз (жидкий аммиак, диметилсульфоксид, диметилформамид, ацетонитрил). Сильное изменение соотношения Кз1Кнап позволяет осуществлять дифференцированное титрование смесей, не титруемых в других растворителях, а именно минеральных и органических кислот алифатических и ароматических кислот аминокислот фенолов и их смесей с карбоновыми кислотами сульфокислот сильных, слабых и очень слабых кислот (оснований) многокомпонентных смесей солей с кислотами и т. д. [c.198]

    При химических взаимодействиях в растворах всегда образуются смеси электролитов и присутствуют различные ионы. Одни из них образуются в результате диссоциации сильных электролитов, другие — слабых электролитов. Некоторые ионы вступают в реакцию, при этом образуются новые малодиссоциированные соединения, малорастворимые осадки, комплексные соединения или продукты реакций окисления — восстановления. Таким образом, в процессе титрования растворы представляют собой сложные системы, в которых в ряде случаев имеется несколько химических равновесий, в том числе и автопротолиз растворителя. Концентрация ионов зависит от общего состояния системы в каждый момент титрования. Поскольку состояние системы определяется термодинамическими константами, характеризующими химические равновесия, эти величины могут служить критериями применимости методов. К ним относятся константы диссоциации кислот, оснований, амфолитов (в неводных растворах также константы диссоциации солей), константы автопротолиза растворителей, константы нестойкости комплексов, произведения активностей осадков, окислительновосстановительные потенциалы и т. д. Термодинамические величины характеризуют полноту протекания реакций, а следовательно, и значения равновесных концентраций ионов. Теоретические кривые титрования дают возможность устанавливать, при каких значениях указанных констант кривые кондуктометрического титрования имеют излом, позволяющий найти точку эквивалентности. При этом реакции не обязательно должны протекать практически до конца, так как смещение ионных равновесий происходит в продолжение всего процесса титрования. Поэтому в основу кондуктометрических определений могут быть положены реакции в какой-то мере обратимые, что недопустимо в ряде случаев при использовании классических химических методов и некоторых физико-химиче-ских методов анализа. [c.38]

    I Нужно иметь в виду, что константы ионизации большинства слабых кислот и оснований мало изменяются с изменением тем- пературы. Это может быть отнесено и к индикаторам. Действительно, у индикаторов-кислот (Hind) с изменением температуры интервал перехода практически не изменяется, так как не изменяется /Сн1п(1  [c.252]

    Из тождества кривых титрования можно сделать следующий важный вывод титрование солей слабых кислот типа NaAn сильными кислотами возможно только при условии, если соответствующая слабая кислота НАп имеет достаточно малую константу ионизации (т. е. достаточно большой рК). Действительно, выше указывалось, что если р/(нАп = 9, т. е. /Снап = Ю , то соответствующую соль можно точно оттитровать, подобно основанию с р осн = 5. [c.285]

    Особенно глубоко протекает гидролиз солей, образованных с.пабой кислотой и слабым основанием. Согласно вышеприведенному выражению, константа гидролиза в этом случае обратно пропор[шональна произведению констант диссоциации кислоты и основания, т. е. ее значение особенно велико. Примером этого случая может служить гидролиз ацетата алюминия, протекающий до основных солей — ацетатов гидроксо- и дигидроксоалюминия  [c.262]

    Поскольку в формулу (XVIII, 92) для pH раствора в эквивалентной точке входят только константы, можно считать, что в первом приближении pH раствора соли слабой кислоты и слабого основания не зависит от концентрации. [c.508]

    Для случая солн, образованной слабой кислотой и сильным основанием, константа гидролиза связана с константой диссоциации кислоты /Скнсл зависимостью  [c.259]

    Реакция растворов солей, образованных слабой кислотой и слабым основанием, зависит от соошошения констант диссоциации кислоты и основания, образующих соль. Если константа дис- [c.262]

    Л гидр = Л и/Л кисл — 1<-онстанта ид[ ,олиза соли сильного основания и слабой однрЗШ Й кислоты. К р = КуКас — -он ст ант а гидролиза соли сильной кислоты й слабого одн основания. Константа гидролиза ацетата аммония имеет вид [c.131]

    Спектральный метод определения констант днссоциацип слабых органических кислот основан на различии в спектрах поглоитеиня аниона и молекулы кислоты, т. е. если какая-либо органическая ки- [c.74]

    Сильные и слабые кислоты. Определения кислоты и основания по Аррениусу и по Бренстеду - Лаури. Полная и неполная диссоциация. Константа диссоциации кислоты К . Сопряженные основания. Выравни-ваюшее действие растворителей. [c.206]

    Равновесия с участием слабых кислот и оснований. Уравнения материального баланса и баланса зарядов. Способы приближенного решения уравнений, включаюших константу диссоциации слабой кислоты или основания. [c.206]


Смотреть страницы где упоминается термин Константа слабых кислот и основани: [c.111]    [c.75]    [c.451]    [c.75]    [c.147]    [c.131]   
Краткий курс физической химии Издание 3 (1963) -- [ c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Вычисление константы гидролиза соли, образованной слабым основанием и сильной кислотой

Кислота слабые

Кислоты слабых слабыми основаниям

КонСтанта слабых кислот и оснований

КонСтанта слабых кислот и оснований

Константа кислоты

Константа кислоты основания

Константа основания

Константы диссоциации воды и некоторых слабых кислот и оснований в водных растворах при

Константы диссоциации некоторых слабых кислот и оснований—6гЗ. Произведения растворимости некоторых солей

Константы диссоциации некоторых слабых кислот оснований в водных растворах

Константы диссоциации слабых кислот и оснований в водных растворах при

Константы диссоциации слабых кислот и оснований. Силовые показатели

Константы диссоциации слабых кислот и слабых оснований

Константы ионизации (диссоциации) слабых кислот и оснований

Определение констант диссоциации слабых кислот и оснований

Определенно констант диссоциации слабых кислот и оснований

Основания и кислоты

Основания слабые

Слабов

Термодинамическая константа диссоциации слабых кислот и оснований и молекулярная электропроводность растворов при

Фотометрическое определение константы диссоциации слабой кислоты (или слабого основания)

Характеристика силы слабых кислот и оснований. Константы кислотности, основности и их показатели



© 2025 chem21.info Реклама на сайте