Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация возбуждение

    Во-вторых, детальное изучение многих сложных химических реакций выявило важную роль активных промежуточных продуктов свободных атомов и радикалов в цепных реакциях, лабильных ионов и ион-радикалов в ионной полимеризации, возбужденных состояний молекул в фотохимических и радиационно-химических реакциях, лабильных комплексов в гомогенном катализе. Для изучения таких активных соединений, реагирующих очень быстро, в кинетике разработаны специальные методы и аппаратура. Можно с полным правом сказать, что современная экспериментальная кинетика есть в значительной своей части кинетика быстро реагирующих активных частиц. [c.367]


    Промышленные процессы полимеризации винилхлорида протекают по механизму радикальной полимеризации, возбужденной инициаторами. Радикалы, возникающие при распаде инициаторов, образуют с мономером активные центры  [c.166]

    Для полимеризации, возбужденной иодом, который согласно реакции [c.298]

    Эффективность использования гидроперекисей углеводородов для инициирования полимеризации резко возрастает при переходе к водным щелочным эмульсиям и применению комплексных активаторов, в присутствии которых главной реакцией свободных радикалов является возбуждение полимеризации. [c.137]

    Кроме использования в качестве меченых атомов, радиоактивные изотопы в настоящее время все шире применяются и как источник излучений в технике для просвечивания металлических изделий (гамма-дефектоскопия), в контрольно-измерительной аппаратуре, в химии — для возбуждения некоторых реакций без повышения температуры, в частности процессов полимеризации, для борьбы со статическим электричеством в промышленности (радиоактивные ионизаторы), в медицине — для лечения злокачественных опухолей, для стерилизации различных препаратов и пр. [c.543]

    Степень полимеризации конечного продукта зависит в таком случае от длины реакционной цепи и, следовательно, от соотношения скоростей процессов возбуждения реакционных цепей и их обрыва ( 200). Течение реакции можно регулировать, изменяя условия проведения процесса. [c.562]

    В последнее время вместе с окислителями для лучшего возбуждения процесса в систему нередко вводят также некоторые восстановители, которые активируют действие самих возбудителей (инициаторов) процесса. Основным преимуществом такого окислительно-восстановительного инициирования является более высокая скорость полимеризации. Это дает возможность проводить процесс при более низкой температуре (без снижения его скорости), с чем связано увеличение среднего молекулярного веса продукта. Кроме того, уменьшение необходимого количества инициатора нередко приводит к повышению термостойкости конечного продукта. [c.563]

    Реакции полимеризации, применяемые в промышленности, бывают двух типов — ступенчатые и цепные 1) ступенчатая полимеризация, когда соединение молекул сопровождается перемещением атомов водорода и образующиеся промежуточные продукты характеризуются значительной продолжительностью жизни 2) цепная полимеризация, когда сначала происходит активирование какой-либо одной молекулы, вызывающей полимеризацию большого числа других молекул, с которыми она сталкивается. В этом случае промежуточные продукты нестабильны. При ступенчатой полимеризации главными продуктами являются полимеры с низкой молекулярной массой. В отличие от ступенчатой полимеризации цепная полимеризация не задерживается на какой-либо промежуточной стадии и конечный продукт представляет собой высокомолекулярное соединение. Цепная полимеризация — один из важнейших методов производства синтетических смол — состоит из стадий возбуждение процесса, рост цепи и обрыв цепи (см. ч. I, гл, V). Общую реакцию можно представить следующим образом  [c.191]


    Фотохимическая полимеризация инициируется при освещении молекул мономера. Возбужденная таким образом молекула моно- [c.390]

    Активные центры — свободные радикалы, атомы, возбужденные молекулы, участвующие в цепной реакции. Цепная реакция может осуществляться одним активным центром, как, например, в реакциях полимеризации  [c.191]

    При фотохимической полимеризации молекула мономера поглощает квант световой энергии и переходит в возбужденное состояние  [c.65]

    Возбуждение и нарушение связей в молекулах мономера и образование активных центров химической реакции полимеризации может развиваться как гомолитический процесс образования радикалов с неспаренными электронами  [c.473]

    Одним из способов возбуждения и ускорения процесса полимеризации является введение ультразвуковых колебаний в жидкий мономер. [c.474]

    Инициирование процесса заключается в создании активных центров путем раскрытия двойной связи в молекулах мономера и в поддержании определенной концентрации их в процессе полимеризации. Существует несколько способов активирования процесса. Термическое активирование и активирование под действием света сводится к возбуждению молекул мономера и последующему превращению их в бирадикалы (частицы, обладающие двумя неспаренными валентными электронами)  [c.379]

    Таким образом, реакция получения полимеров энергетически пре-определена, но молекулы мономеров и других относительно простых веществ, вступающих в реакции полимеризации или поликонденсации, обладают значительной устойчивостью и редко реакция образования высокомолекулярных соединений протекает самопроизвольно (образование параформа и т. д.). Для возбуждения системы и возможности реакций в ней необходима энергия активации, которая способна создать условия для развития цепной реакции полимеризации или поликонденсации. [c.489]

    Радиационная полимеризация—это полимеризация, при коте рой возбуждение молекул образование свободных радикалов происходит под действием ионизирующих излучений. [c.40]

    В 1953 г. были открыты новые катализаторы анионной полимеризации. Они представляют собой комплексы металлорганических соединений с солями переходных металлов. Такие катализаторы, известные как катализаторы Циглера — Натта, обладают чрезвычайно высокой полимеризационной активностью. Полимеризация, возбужденная такими катализаторами, называется анионно-координационной полимеризацией. Наиболее известны катализаторы этого класса — комплексы триэтилалюминня с солями титана  [c.397]

    Полимеризация при облучении может быть осуществлена по крайней мере двумя путями. В результате фотолиза могут образоваться свободные радикалы, инициирующие полимеризацию возбужденные частицы сами по себе также могут явиться инициаторами [11, 152, 172, 269]. Судя по результатам анализа, существует прямая зависимость между полимеризацией, вызываемой Свободными радикалами, и полимеризацией, вызываемой блучением [23, 56]. [c.418]

    В 1953 г. были открыты новые катализаторы анионной полимеризации. Они представляют собой комплексы металлорганических соединений с солями переходных металлов. Такие катализаторы, известные как катализаторы Циглера — Натта, обладают чрезвычайно высокой полимеризационной активностью. Полимеризация, возбужденная такими катализаторами, называется анионно-координационной полимеризацией. Наиболее известные катализаторы этого класса — комплексы триэтилалюминия с солями титана А1(С2Н5)з + Т1Си (или Т1С1з). Эти катализаторы позволили упростить и облегчить технологию получения многих полимеров. Например, для синтеза полиэтилена без таких катализаторов требуются жесткие условия (давление 150—250 МПа, температура около 30Ь°С). Применяя катализаторы Циглера — Натта, полиэтилен получают при давлении, не превышающем 1 МПа, и температуре не выше 60°С. Полиэтилен, синтезированный без катализаторов Циглера — Натта, называют полиэтиленом высокого давления в противоположность полиэтилену низкого давления (с катализатором). [c.375]

    Изучение другими авторами [T s u d a I., J. Polym. S i., 49, 369 (1961)] твердофазной полимеризации формальдегида при уоблучении также привело к выводу о наличии пост-полимеризации. При этом взрывная пост-полимеризация происходит даже при малых дозах облучения. На основании этих данных, а также высокого предельного числа вязкости (3—4, у дельрина 0,8) автор делает предположение о том, что механизм твердофазной радиационной полимеризации формальдегида отличается как от свободнорадикального, так и от простого ионного. Предполагается, что ионизирующее излучение переводит формальдегид в высоковозбужденное состояние НгС+— —0 которое инициирует ионную полимеризацию. Возбуждение молекул сохраняется долгое время при —196" без потери энергии. Полимеризация же, протекающая при температурах выше —150°, по механизму не отличается от полимеризации в жидкой фазе. Полимер, полученный при облучении при —196°, отличается по внешнему виду от полученного при —145° в первом случае — это волокно, во втором — жесткий блок. [c.158]


    Радиационная полимеризация. Возбужденные молекулы многих веществ, возникающие при облучении, могут распадаться на свободные радикалы (например, —СНз, —СНг— и т. п.). Присутствие у последних неспаренных электронов обусловливает большую реакционную способность подобных атомных групп (а иногда и отдельных атомов). Свободные радикалы при подходящих условиях могут инициировать цепные химические реакции в промышленных масштабах, начиная собой образование макромолекулы полимера. Таким путем удалось заполи-меризовать некоторые органические соединения, причем процесс шел с большой скоростью и с большим выходом. Например, из этилена путем радиационной полимеризации получается твердый полиэтилен. [c.165]

    При этом гранс-форма, имеющая более низкую энергию, подвергается полимеризации, а ис-форма, возникающая при более высоких температурах, является промежуточным продуктом распада, так как в этой конформации облегчается отщепление молекулярного водорода. Таким образом, при 1700—2300 К и отсутствии условий конденсации углерода основным продуктом разложения бензола является ацетилен, а процесс сажеобразо-вания происходит через возбуждение состояния его молекулы. [c.169]

    По мнению А. Р. Гантмахера и С. С. Медведева [62] каталитическая полимеризация, протекающая под действием BFg, AI I3, Ti l4 и других агентов, по своему механизму отличается от полимеризации под действием света или перекисей, где активными центрами являются свободные радикалы. Галогениды металлов, катализирующие полимеризацию, способствуют возбуждению электро- [c.628]

    ГОРЯЧИЕ АТОМЫ — атомы, возника-10щие в результате ядерных превращении. Они называются Г. а., т. к. их энергия соответствует энергии атомов, нагретых до миллионов градусов. Г. а. называют также атомами отдачи, поскольку они воспринимают кинетическую энергию отдачи материнского ядра. Благодаря высокой кинетической энергии, возбужденному электронному состоянию и высокому положительному заряду, Г. а. способны вступать в такие химические реакции, в которые обычные атомы не вступают. Г. а. все большее применение находят при синтезе меченых соединений. Перспективно использование реакций Г. а. в процессах синтеза аммиака, полимеризации, проведении реакций без катализатора и др. [c.80]

    ТИ8НЫХ Промежуточных частиц атомов, свободных радикалов, ионов или реже молекул с повышенным запасом энергии (колебательно- или электронно-возбужденных молекул). К цепным процессам принадлежат гомогенные газовые реакции горения и медленного окисления, многие реакции крекинга, разложения и полимеризации углеводородов, разложения ряда твердых, жидких и газообразных органических соединений, синтеза НС1, НВг, реакции расщепления ядер урана и др. Различают неразветвленные и разветвленные цепные реакции. В неразветвленных цепных реакциях каждая исчезающая активная промежуточная частица вызывает появление одной новой активной частицы. Типичным примером не-разветвленной цепной реакции служит образование хлористого водорода из хлора и водорода под действием светового потока  [c.381]

    Реакция полимеризации состоит из трех элементарных стадий образования активного центра, роста цепи и обрыва цепи. В зависимости от природы активного центра различают радикальную полимеризацию, при которой активным цеятром является свободный радикал, а рост цепи протекает гомолитически, и ионную полимеризацию, при которой активными центрами являются ионы или поляризованные молекулы, а рост цепи протекает гетеролитически. Методы возбуждения и механизмы этих двух видов полимеризации различны. [c.9]

    Фотохимическая полимеризация. Некоторые непредельные соединения — стирол, хлоропрен, винилацетат, хлористый винил, метиловые эфиры акриловой и метакриловой кислот и др.— легко полимеризуются на свету. Особенно энергично активируют процесс полимеризации ультрафиолетовые лучи. Инициирование процесса полимеризации поддействием света рассматривается как поглощение молекулой мономера кванта световой энергии и переход ее в возбужденное состояние [c.448]

    Существуют неизбежные проблемы, связанные с радикальной полимеризацией поверхностных покрытий. Кислород ингибирует радикальную полимеризацию, эффект усиливается высоким отношением поверхность/объем в тонких пленках. Кислород может также тушить возбужденные триплетные состояния молекул инициаторов (хотя инициаторы и аминной, и тиоловой природы создают некоторую защиту). Далее, полимеризация двойных связей включает физическое сокращение, которое может изменять сцепление с подложкой. Анионная полимеризация еще более чувствительна к ингибированию кислородом, чем радикальная полимеризация, и не подходит для применения в пойерхностных покрытиях. Значительно более многообещающей является катионная полимеризация. Если другие нуклеофильные соединения, отличающиеся от мономера, могут быть устранены, то возникает ситуация, когда полимеризация продолжается длительное время после прекращения облучеиия, пока в принципе все функциональные группы не будут исчерпаны. Катионная полимеризация не ограничивается олефиновы-ми мономерами, а может также проходить с напряженными циклическими системами типа циклоалифатических и других эпоксидов. При раскрытии колец происходит незначительное сжатие, а с некоторыми мономерами возможно даже слабое расширение. Кислород, по-видимому, не ингибирует катионную полимеризацию, хотя очень серьезной проблемой является легкость, с которой развитие реакции может быть прервано следами нуклеофильной примеси. [c.261]

    При прекращении роста макромолекул в результате взаимной комнен- сации возбуждения двух макрорадикалов число активных центров полимеризации в системе уменьшается. При передаче возбуждения макрорадикалов на молекулы мономера число активных центров в полимеризующейся системе сохраняется. Если возбуждение передается на одно из звеньев уже образовавшейся макромолекулы, то в ней возникают разветвления и нарушается регулярность линейного строения полимера. [c.762]

    Полимеризация хлористого винила, как и всех галоидпроизводных этилена, протекает по радикальному механизму. Скорость полимеризации хлористого винила в присутствии перекиспого инициатора постепенио нарастает до превращения 30—40% мономера в полимер, после чего становится постоянной. В конце процесса при степени превращения выше 75—80% скорость полимеризации заметно снижается. Это объясняется тем, что полихлорвинил не растворим в своем мономере. Осаждающиеся мельчайшие частицы полимера адсорбируют часть мономера, и дальнейшая полимеризация протекает в набухших частицах полимера. Прекращение роста макромолекул полихлорвинила происходит преимущественно передачей энергии возбуждения макромолекулы мономеру или полимеру. Во втором случае образуются разветвленные макромолекулы. Средний молекулярный вес полимера зависит от метода полимеризации, количества инициатора и температуры реакции. [c.800]

    Способы возбуждения мономера. Процесс возбуждения мономера, т е. Превращение его в первичный радикал, требует затраты энергии. Этот процесс может происходить под влиянием тепла, света, ионизирующего гпл>чения (а-, р- и у-лучи), а также при введении в систему извне свободных радикалов или веществ, легко распадающихся на свободные радикалы (инициаторов). В зависимости от способа образования свободных радикалов различают термическую, фотохимичсск ую, радиационную полимеризацию и Полимеризацию под влиянием химических инициаторов [c.39]


Смотреть страницы где упоминается термин Полимеризация возбуждение: [c.178]    [c.562]    [c.72]    [c.216]    [c.95]    [c.11]    [c.10]    [c.21]    [c.64]    [c.473]    [c.378]    [c.472]    [c.40]    [c.312]   
Краткий курс физической химии Издание 3 (1963) -- [ c.558 ]




ПОИСК





Смотрите так же термины и статьи:

Излучение возбуждение полимеризации



© 2024 chem21.info Реклама на сайте