Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Течения замкнутые

    Такая схема решения эффективна лишь в тех случаях, когда на границах смешивающихся потоков сохраняются постоянными значения скорости, температуры и концентраций, как например при смешении двух полубесконечных потоков топлива и окислителя . При наличии в поле течения замкнутого фронта пламени автомодельное решение тепловой и диффузионной задачи не может быть найдено. Это осложняет, а в ряде случаев исключает, возможность получения аналитического решения. Даже при использовании приближенных методов, позволяющих описать неавтомодельную область течения, расчет [c.30]


    Мы наблюдаем большое сходство в структуре образующихся при этом зон. Действительно, как в случае обтекания пластины, так и при взаимодействии потока и встречной струи образуются характерные зоны, определяющие специфику такого рода течений замкнутая зона циркуляции [c.93]

    Промывку катализатора растворителем проводят по схеме гидроочистки с замкнутым циклом по потоку растворителя. За ходом промывки катализатора следят по количеству остатка после разгонки топлива. Отработанный растворитель можно сбрасывать в сырую ефть или мазут. Время, затрачиваемое на промывку, зависит от количества циркулирующего растворителя и составляет от 2 до 5 ч. После промывки катализатора растворителем необходимо в течение [c.129]

    Основные уравнения. В отличие от реакций в замкнутом объеме при осуществлении реакций в потоке (с неизменным режимом течения) концентрации реагентов повсюду остаются постоянными во времени, но меняются в пространстве. Для вывода кинетического уравнения реакции в потоке рассмотрим поток реагирующей смеси через бесконечно малый элемент объема реактора длиной йХ (где X — координата, отсчитываемая по ходу потока) . Благодаря химическим превращениям, протекающим в выделенном элементе объема, количество N1 -го вещества, проходящее через единицу поперечного сечения реактора в единицу времени, изменяется на величину = г,. йХ, откуда  [c.74]

    На рис. 72 представлена зависимость ст. малосернистого грозненского кокса, полученного из крекинг-остатка, от длительности прокалки при 1200 °С и степени измельчения кокса. С повышением степени измельчения возрастает количество вскрытых замкнутых пор, что ведет к увеличению ст. Наибольшее возрастание ст-происходит в течение первых 3 ч прокалки. В производственных условиях прокалка длится обычно не более 5 ч. В соответствии с этим, методика анализов предусматривает длительность прокалки 5 ч, а степень измельчения — соответствующую полному просеиванию через сито 150 меш (размер ячеек 0,10 мм). [c.194]

    На рис. 6 показана воображаемая схема движения двух теплоносителей. Течение жидкостей в пространстве теплообменника оказывается трехмерным, при этом могут существовать зоны рециркуляции, в которых линии тока замкнуты. [c.8]

    В [35] применялся численный метод [36 для решения систем эллиптических дифференциальных уравнений в частных производных для задачи о потоке, падающем на поверхность из единичного щелевого сопла. Система уравнений должна быть замкнута с помощью более или менее произвольной гипотезы о взаимосвязи между корреляциями турбулентных пульсаций (например, и и, о р, v T ) и средними значениями скоростей, давлений, температур и т. д. Метод дает множество подробной информации о всем поле течения линиях тока, линиях равной завихренности, изотермах и линиях равной энергии турбулентности. К сожалению, расчеты были выполнены только для одного фиксированного относительного расстояния от сопла до пластины Я/В=8. Числа Нуссельта находятся в хорош ем согласии с данными измерений [20[. Однако их поперечное изменение значительно отличается от измеренных кривых, особенно для низких чисел Рейнольдса. [c.269]


    Внутренние элементы сердечника рекуператора показаны на рис. 7. Воздух под высоким давлением входит в круговые патрубки и течет по каналам сердечника с малым проходным сечением. Отработанные газы из турбины выходят в противотоке через более крупные каналы матрицы сердечника. Высокоэффективные плоские ребра используются в случае течения потока как газа, так и воздуха. Элемент сборки, образованный при пайке и обозначенный схематично на рис, 7, показан более подробно на рис. 8. Два и-образных кольца привариваются по краям к трубным доскам и образуют замкнутую газовую полость вокруг газовых патрубков, как показано на рис. 8. Газовые и воздушные полости изготавливаются с помощью сварки после спаивания подсборки. Сердечник на рис. 6 делается укладкой в стойку законченных подсборок, показанных на рис. 9. Дополнительное сваривание по краям периферии отверстий воздушных патрубков производится во время укладывания элементов сборок. Весь рекуператор, состоя- [c.304]

    Если н идкую идеальную бинарную смесь в течение значительного времени выдержать в замкнутом объеме при кипении в условиях постоянной температуры и постоянного давления, система, состоящая из пара и жидкости, придет в состояние равновесия. Более строгим критерием установившегося равновесия будет равенство химических потенциалов всех компонентов в фазах. [c.289]

    Тепловые потери от продуктов сгорания возможны в результате излучения и при соприкосновении продуктов сгорания с твердой поверхностью по механизмам теплопроводности и конвекции. Вследствие большой разницы температур стенок и продуктов горения теплоотвод в стенки очень велик. При остывании продуктов сгорания в замкнутом объеме они соприкасаются со стенками по всей поверхности сосуда. Охлаждение обычно практически завершается в течение времени, не превышающего 1 с. При охлаждении продуктов горения взаимное расположение пламени и стенок играет решающую роль. В случае поджигания в центре сферического сосуда пламя не касается стенок до полного сгорания всей смеси, и охлаждение газа возможно только путем излучения. Некоторые сведения о закономерностях излучения газов излагаются в Приложении 1. [c.16]

    Скорость циркуляции за счет естественной конвекции можно вычислить таким же способом, как и скорость циркуляции за счет принудительной конвекции. В схеме замкнутого типа движущая сила определяется разностью плотностей теплоносителя в восходящем и нисходящем участках если же используется открытая система с вертикальной трубой, то движущая сила определяется разностью плотностей теплоносителя в выводной трубе и окружающей среды. Легко показать, что максимальная скорость циркуляции будет достигнута, если в основание горячего трубопровода поместить нагреватель, а в верхней части нисходящего холодного трубопровода — холодильник. Поскольку режим течения на отдельных участках может быть как ламинарным, так и турбулентным, для каждого элемента системы необходимо определить коэффициенты трения и теплоотдачи. [c.64]

    Точками ветвления являются фокусы эллипса X = у/3, у = О, и приведенное решение однозначно на всей плоскости X, у с разрезом < с у/З, у = О, соединяющим эти точки. Во внешней по отношению к эллипсу области разрезов нет. Линии тока этого течения, если они не попадают на разрез, замкнуты и симметричны относительно осей X и у. На рис. 4.4 они изображены в первом квадранте. Сверху и снизу от разреза значения и, как и значения V, различаются. Стрелками указано направление течения при С) > 0. [c.197]

    Винтовое течение. Рассмотрите винтовое течение под действием аксиального градиента давления и вращения внешнего цилиндра. Запишите для этого случая уравнения движения и неразрывности (г- и 0-компоненты). Покажите, что в случае ньютоновской жидкости уравнения интегрируются непосредственно, в случае же, когда т) = т) (у), где у-> модуль у, система уравнений замкнута. [c.178]

    Пользуясь той же моделью эффективной активной зоны, можно выполнить приближенный расчет влияния магнитного поля на аэродинамику турбулентного газового факела. Как и в обычной газодинамике, для решения необходимо с помощью полуэмпирической теории связать коэффициенты турбулентного обмена с ос-редненными параметрами течения. Замкнутая таким путем система уравнений пограничного слоя с учетом дополнительных условий для эффективной зоны может быть решена теми же методами, что и в предыдущих главах. [c.170]

    Рассмотренный метод для облака из N сферических частиц, осаждающихся в неорганической среде, дает следующий результат сила сопротивления, действующая на пробную частицу, уменьшается с увеличением чиста частиц. Это означает, что за счет гидродинамического взаимодействия каждая частица в облаке осаждается быстрее такой же одиночной частицы и, чем больше число частиц, тем больше скорость их осаждения. Однако известно, что осаждающиеся частицы индуцируют нисходящее течение жидкости. Это нисходящее течение в силу выполнения глобального условия неразрьтности в реальных условиях должно компенсироваться возвратным восходящим течением с тем же объемным расходом. Для облака, осаждающегося в неограниченной среде или в замкнутом объеме, но на достаточном удалении от стенок, возвратное течение имеет место в основном по краям облака и не оказывает заметного [c.65]


    Задача определения силы сопротивления, действующей на частицу в суспензии, сводится к задаче отыскания полей скоростей и давлений вокруг частицы, движущейся в замкнутой оболочке. Течение жидкости в ячейке должно удовлетворять уравнениям Навье-Стокса. Рещение в аналитическом виде удается получить только для двух предельных случаев режима ползущего движения, описываемого уравнениями Стокса, и инерционного режима движения, описываемого уравнениями идеальной несжимаемой жидкости. На поверхности частицы должно удовлетворятся обычное условие отсутствия скольжения, т. е. скорость движения жидкости должна быть равной средней скорости движения частицы. Условия на внещней границе ячейки, отражающие воздействие всего потока на выделенную ячейку, не могут быть определены однозначно, поскольку механизм этого воздействия недостаточно понятен. В основном используются три типа условий 1) предполагается, что возмущение скорости, вызванное наличием частицы в ячейке, исчезает на границе ячейки [105] 2) ставится условие непротекания жидкости через границу ячейки (обращается в нуль нормальная составляющая скорости) и предполагается отсутствие касательных напряжений на границе ячейки (модель свободной поверхности) [106] 3) условие непротекания жидкости сохраняется, но предполагается, что на границе ячейки обращаются в нуль не касательные напряжения, а вихрь [107]. [c.68]

    После устранен] я выявленных при обкатке и продувке недостатков постепенно дают машине нагрузку. Компрессоры под нагрузкой прирабатывают на воздухе или азоте. Испытание компрессора на а юте производится по замкнутому циклу. Длительность приработки машины под нагрузкой зависит в основном от ее размеров и сложности. Газовый компрессор 1Г-266/320 под нагрузкой испытывают в течение 48 ч. Наблюдать за работой машины в этот период следует особенно внимательно. После истечения установленного времени пробега под нагрузкой машину останавливают и проводят ревизию основных узлов коренных подшипников, шатунов, крейц-копфных пальцев, всасывающих и нагнетательных клапанов, поршней и поршневых колец, шеек вала, сальниковых набивок и лабиринтных уплотнений, масляных фильтров, штоков, редукторов. ЕЗы-янленные при этом дефекты следует устранить. Сборку машин после ревизии нужно проводить особенно тщательно, чтобы не нарушить пригонку частей, достигнутую в процессе приработки. После сборки, с целью проверки ее правильности, машину вновь пускают под нагрузкой. Продолжительность пробного пробега машины под нагрузкой составляет 1—3 ч. При нормальной работе всех узлов машину включают в систему для работы. После определенного срока работы машины в системе подписывается акт о приемке агрегата из ремонта. [c.338]

    На рис. 2 и 3 приведены данные но изменению концентрации бутена-1 и бутена-2-траис в отдельных зонах по высоте реактора во времени при оптимальном (см. рис. 2, а, 6) и неоптимальном (см, ])ис. 3, а, б) режимах активации катализатора (зависимости от бутепа-2-г ис не приведены ввиду их качественной идентичности с зависимостями для трякс-изомера). Все зависимости характеризуются общими особенностями. Во-первых, в течение 1 ч работы катализатора концентрация бутепов в аервой зоне резко возрастает, так как процесс алкилирования в присутстиии цеолитных катализаторов по аналогии с сернокислотным алкилированием [11 характеризуется индукционным периодом и циркуляция реагентов по замкнутому [c.340]

    В закрытых системах [229—234] самопроизвольно устанавливается циркуляция дисперсионной среды по своеобразной замкнутой схеме термодиффузионный поток пара (ТДП)-)-тер-мопоток связанной влаги (ТСВ)- -термокапиллярный поток влаги (ТКП) диффузионный поток влаги (ДВП)- пленочное течение влаги под действием градиента расклинивающего давления (ПРД). При этом вынос ионов влагой из материала тем выше, чем больше ТСВ. Поскольку величина термоградиент- [c.78]

    Количество пара, выделяющегося из расплава, зависит от содержания в нем воды, от его массы, исходной температуры и давления, а также от интервала температур и давлений, при которых происходит кристаллизация. Размеры магматического тела являются существенным фактором, определяющим время остывания интрузии и тем самым время, в течение которого из кристаллизующегося расплава выделяется вода. Вследствие более облегченного разряжения внутреннего давления на поверхности земли в эффузивном процессе отделение водяного пара (и других флюидов) происходит быстрее, чем в интрузивном. Последний процесс происходит в более замкнутой системе и потому понижение температуры и давления в нем происходит более медленно и равномерно. Кристаллизация охлаждающегося интрузива замедляется выделением скрытой теплоты плавления, сопровождающим кристаллизацию и, кроме того, движением масс внутри интрузивного тела вследствие конвекции [Хитаров Н. И., 1967 Whitney J. А., 1975]. Конвекция вызывается не только температурным градиентом, но и различием в плотности расплава, содержащего разные количества воды. Чем больше воды в расплаве, тем меньше его плотность. [c.147]

    Попытка учета указанных факторов при построении кинетической модели псевдоожиженного слоя сделана в работе [57] (схема этой работы положена в основу дальнейшего изложения). На первом этапе строится замкнутая система, содержащая кинетические уравнения для газа и твердой фазы. При построении системы кинетических уравнений используется феноменологический подход. Система учитывает взаимодействие между фазами, описывает явления в псевдоожиженном слое в едином масштабе и учитывает тот факт, что отдельная твердая частица движется в неконсервативном поле сил. На втором этапе выводится система уравнений гидромеханики псевдоожиженного слоя, содержащая явный вид силы межфазного взаимодействия. На третьем этлпе путем последовательного упрощения системы гидромеханических уравнений и оценки порядков входяпщх в них величин решается задача об одномерном нестационарном течении внутри слоя. Кратко рассмотрим каждый из перечисленных этапов. [c.162]

    Теоретическое исследование процесса конвективного теплообмена требует надежных данных о гидродинамике потока. Не-замкнутость уравнений Рейнолы1са не позволяет получить точное теоретическое рещение задачи при турбулентном режиме движения жидкости. Это обусловило возникновение и разработку двух фундаментальных направлений в теории турбулентного теплообмена первое - полуэмпирические феноменологические теории, развитые в работах Д. Тейлора, Л. Прандтля, Т. Кармана, А. Н. Колмогорова и др. второе - статистическое описание турбулентности, изложенное в работах Л. Келлера, А. Фридмана, И. Бюргерса, М. Миллионщикова, А. Монина, И. Хинце и др. Однако ни один из этих подходов в настоящее время не позволяет достаточно точно решить задачу гидродинамики турбулентного потока жидкости в каналах сложной геометрической формы ПТА, особенно при сложном трехмерном характере течения в каналах сетчато-поточного типа. [c.357]

    Здесь необходимо сделать несколько существенных замечаний. Во-первых, во избежание путаницы при классификации взрывов на "ограниченные" и "неограниченные" целесообразно основываться на различии в физической стороне этих процессов. Для "ограниченного" взрыва характерно значительное увеличение давления в смеси даже при относительно низкой скорости химического превращения, что может иметь место только при большой степени ограниченности пространства - взрывы в замкнутых сосудах, помещениях и т. д. Взрывы паровых облаков в условиях промышленной застройки следует рассматривать как "неограниченные , но с большим количеством препятствий, способных приводить лишь к локальному росту давления и турбулизации течения. Во-вторых, дефлаграционные процессы с высокими видимыми скоростями пламени (свыше 100 м/с) также являются взрывами, поскольку они приводят к формированию воздушных ударных волн. В-третьих, возникновение мощных взрывных процессов (вплоть до детонации) в паровых облаках не обязательно требует ограничения пространства и мощных источников инициирования. Неоднородность температуры и/или концентрации смеси, центры турбулизации могут являться причиной появления таких процессов. Подобный сценарий событий тем вероятнее, чем больше облако [Гельфанд, 1988 Berman, 1986]. - Прим. ред. [c.302]

    При циркуляции этих теплоносителей в замкнутой системе без контакта с кислородом возд>тса они не теряют своих качеств в течение нескольких лет. При экспл> атации КПС на протяжении 9 лет (в г. Уфе) масло не менялось и добавлялось лишь для ко.мпенсации утечек через сальники и уплотнения. [c.155]

    Термическая деструкция проведена путем нагревания сквалана или ликопана в замкнутом объеме нри 400° С в течение 2 час. Глубина превращения исходных углеводородов нри этом не превышает 5— 10%, однако при незначительной глубине превращения в продуктах реакции обычно отсутствуют мешающие анализу непредельные углеводороды или вторичные продукты превращений. [c.70]

    Влияние шероховатости. Влияние шероховатости на поле течения около круглого цилиндра исследовалось в 123—26]. На рис. 4 показан коэффициент сопротивления шероховатого круглого цилиндра в поперечном потоке в зависимости от числа Рейнольдса, измеренный в [23]. Параметром является относительная шероховатость /г /О. Каждая кривая охватывает три режима докритический, критический и сверхкритический. Очевидно, что в докри-тическом режиме шероховатость поверхности никак не сказывается. При больших числах Рейнольдса ламинарный отрыв сопровождается образованием замкнутого пузыря. Таким образом, точка отрыва сдвигается вниз по потоку и поэтому сопротивление уменьшается. На шероховатой поверхности этот эффект наблюдается при меньших числах Рейнольдса, что обусловлено дополнительными возмущениями пограничного слоя, создаваемыми шероховатостью. Уменьшение сопротивления в критической области для шероховатой поверхности заметно меньше, чем для гладкой. [c.139]

    После заполнения системы водородом для удаления остатков воздуха и влаги проводится циркуляция водорода через ожижитель и предварительно подготовленный блок очистки. Во время циркуляции давление водорода за компрессором поддерживается 20—30 ат. Циркуляция осуществляется в течение 6—8 ч по замкнутому циклу газгольдер — компрессор — блок маслоотделения — ожижитель — блок очистки — газгольдер. [c.100]

    Для оценки химической стабильности разработан еще один стандартный метод по ГОСТ 22054—76, основанный на ускоренном окислении бензина (25 мл) при 110°С в течение 6 ч кислородом воздуха в замкнутом объеме — в приборе ЛСАРТ (рис. 28). Критерием оценки служит суммарное количество продуктов окисления осадка, который определяют фильтрованием окисленного бензина, фактических смол, определяемых в окисленном бензине, и смол, нерастворимых в бензине, — их смывают со стенок стаканчика ацетоном и определяют по массе остатка после испарения растворителя в приборе для определения фактических смол. Химическая стабильность выражается суммой этих продуктов, выраженной в мг/100 мл  [c.86]

    Для очистки этого стока рекомендуется применять горизонтальные отстойники с фильтрующим коксовым слоем высотой не менее 1 м. Объем отстойника рассчитан на количество стоков, накапливающихся в течение 2—2,5 ч. В очищенной воде содержится не более 10 мг/л механических примесей и ее повторно используют для гидрорезки кокса. Количество воды, циркулирующей в замкнутой системе, достигает 800 м /ч при общей производительности установок замедленного коксования 1,2 млн. т/год. [c.219]

    МО от количества перекаченного горючего, а также при обнаружении разрывов и потертостей фильтрующих тканей. После установки фильтрэлементов 8Д2.966-055 фильтра ТФБ в корпусе фильтра первый раз и после каждой замены элементов следует производить прокачку топлива по замкнутому контуру с расходом топлива не более 1000 л/мин в течение 25-30 мин. Для фильтрационного чехла ТФЧ необходимо после установки его в топливный фильтр произвести прокачку 3-5 тыс. л в другую емкость, через фильтр. Только после этого разрещается производить выдачу топлива на раздачу. [c.92]

    Нагрев в замкнутом объеме. Битумы в замкнутом объеме нагревали определенное время" в" тонкой пленке, помещенной между двумя стеклянными пластинами в интервале температур 107,2— 190,6 °С. В этих условиях процессы окисления и испарения исключались и вязкость изменялась в результате полимеризации и деполимеризации (крекинга), которые про .влялнсь только после 4 ч нагрева. Данные о влиянии нагрева в темноте в течение 4 ч пленок битумов с пенетрацией 85—100, заключенных между стеклянными пластинами, приведены ниже  [c.142]

    Итак, все решения системы уравнений (2.7)-(2.9) при постоянных O, , если os i Ф О, определяются равенствами (2.37), (2.36), (2.34), (2.31), (2.12). Во всех случаях в выбранный момент времени и, v постоянны на прямых Е = onst. Отсюда следует, что в плоских течениях вязкой несжимаемой жидкости при постоянном давлении нет замкнутых мгновенных линий тока vdx = udy. Следует помнить, что в том подразделе 4.2.2 величины t, х, у представляют собой разделенные на и время и декартовы координаты. Для выявления зависимости от коэффициента вязкости I/ в решениях полученных уравнений величины t, х, у следует разделить на I/ и после этого считать t, х, у физическими переменными. [c.190]

    При рекомбинации радикалов Кба выход свечения обычно значительно выше, чем при рекомбинации Й. Таким образом, если реакцию окисления проводить в условиях, когда возможна замена радикалов Н на КОг или наоборот, можно наблюдать резкое изменение интенсивности свечения. Например, если окисление углеводорода проводить в замкнутом объеме в растворе, первоначально иасыщеином кислородом, в течение длительного времени /си нн- [c.125]

    Измерение объема менее точно, чем взвешивание, но при массовом методе необходимо прервать испытание, удалить продукты коррозии и лишь тогда определять уменьшение массы образца. Поэтому найденная скорость коррозии представляет собой некоторую усредненную величину за период нспытания. При этом предполагается, что скорость процесса не менялась в течение времени, что далеко не всегда справедливо. За изменением объема газа в некоторой замкнутой системе можно следить, не прерывая испытания, что дает более содержательную информацию о кинетике процесса коррозии. [c.15]

    Кроме массовых (гравиметрических) способов измерения потерь металла при оценке скорости коррозии нередко прибегают к объемным (волюметрическим) способам. Это возможно в тех случаях, когда окисление металла сопровождается расходом или выделением газа. Так, при атмосферной коррозии расходуется кислород, а при кислотной выделяется водород. Объем израсходованного кислорода или выделившегося водорода пропорционален массе окислившегося металла. При этом следует помнить, что на 1 моль израсходованного кислорода окисляются 4 моля металла, а при выделении водорода на один моль водорода окисляются два моля металла. Измерение объема менее точно, чем взвешивание, но при массовом определении скорости коррозии необходимо прерывать испытание, удалять продукты коррозии и лишь после этого определять уменьшение массы образца. Поэтому найденная скорость коррозии представляет собой некоторую усредненную величину аа 1 ерйод испытания. При этом предполагается, что скорость процесса не изм яялась в течение опыта, что не всегда справедливо. За изменением объема газа в некоторой замкнутой системе можно следить, не прерывая испытания, что дает более содержательную информацию о кинетике процесса коррозии. Массовую потерю металла (г) при атмосферной и кислотной коррозии вычисляют по формуле [c.11]

    Существование лиминарного течения возможно только при малых Ке. При Не > Кекр устойчивость течения нарушается, и движение отдельных малых объемов газа становится неупорядоченным, пульсирующим. Мгновенное значение вектора скорости в той или иной точке потока отличается от значения, осредненного по времени. Точно так же отличаются мгновенные и средние значения давления, плотности, концентрации реагирующих веществ и т. д. Турбулентное горение представляет собой нестационарный процесс турбулентного смешения продуктов сгорания и свежей смеси и реагирование последней вследствие повышения ее температуры. В этих условиях закономерности ламинарного распространения реакции теряют свою силу. Решающими факторами становятся турбулентные пульсации и связанная с ними интенсивность перемешивания продуктов сгорания со свежей смесью. Если в теории ламинарного горения основные трудности вызваны отсутствием точных кинетических параметров, которые должны быть подставлены в систему уравнений, то в теории турбулентного горения необходимая система уравнений даже и не составлена. В настоящее время не только отсутствует возможность создания замкнутого расчета, но нет и единого понимания механизма процесса. [c.134]


Смотреть страницы где упоминается термин Течения замкнутые: [c.207]    [c.215]    [c.205]    [c.74]    [c.133]    [c.160]    [c.175]    [c.184]    [c.204]    [c.212]    [c.92]    [c.163]    [c.247]    [c.400]    [c.65]   
Свободноконвективные течения, тепло- и массообмен Кн.2 (1991) -- [ c.20 ]

Свободноконвективные течения тепло- и массообмен Т2 (1991) -- [ c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте