Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аллильные перегруппировки реакция

    Аллильные перегруппировки. Реакции замещения в аллилъном положении часто связаны с перемещением двойной связи из первоначального положения в соседнее в углеродном скелете. На рис. 20.7 приведена общая схема аллильной перегруппировки. [c.468]

    Аллильная перегруппировка. Реакции нуклеофильного замещения у соединений, содержащих аллильную систему С—С=С, обычно сопровождаются перегруппировками. Например, при обработке кротилового спирта бромистоводородной кислотой получается смесь бромистого кротила и З-бромбутена-1. Та же смесь (равновесная смесь, содержащая [c.468]


    Следует заметить, что при гидролизе бутен-2-илхлорида в условиях, благоприятствующих механизму 5ы2, аллильная перегруппировка все равно наблюдается, хотя причины, порождающие ее, несколько иные. В этом случае вследствие — /-эффекта атома галогена дефицит электронной плотности возникает не только на атоме С-1, непосредственно связанном с галогеном, но и на атоме С-3, входящем в винильную группу, вследствие легкой поляризуемости я-связи. Поэтому атака нуклеофильного реагента с приблизительно одинаковой степенью вероятности направляется как на атом С-1, так и на атом С-3. В первом случае по-видимому, реализуется линейное переходное состояние (34), которое не отличается от переходного состояния для реакций, протекающих по механизму 5к2, и образуется бу-тен-2-ол-1 (37). Во втором случае, по-видимому, может реализоваться как щестичленное циклическое переходное состояние (35) с синхронным перераспределением связей, так и линейное переходное состояние (36), что приводит к образованию изомерного продукта — бутен-1-ола-З (38). Таким образом, и в данном слу- [c.134]

    Изомеризация двойной связи может происходить и другими путями. Нуклеофильные аллильные перегруппировки обсуждались в гл. 10 (разд. 10.8). Электроциклические и сигматропные перегруппировки рассматриваются в т. 4 на примере реакций 18-31—18-39. Миграцию двойной связи можно также осуществить фотохимически [59], а также под действием ионов металлов (главным образом комплексных ионов, содержащих Рс1, Р1, РЬ или Ни) или карбонилов металлов в качестве катализаторов [60]. В последнем случае возможны по крайней мере два механизма. Один из них, требующий водорода извне, называется механизмом присоединения — отщепления гидрида металла  [c.425]

    Как известно, галоидные аллилы в процессе реакций замещения частично перегруппировываются (аллильная перегруппировка)  [c.328]

    Бимолекулярная реакция, сопровождающаяся аллильной перегруппировкой (реакция 5 2 ), впервые описана иа примере взаимодействия З-хлорпентена-1 (I) с иатриймалоновым эфиром II (Юнг, 1949). Эта реакция второго порядка приводит к образованию двух веществ  [c.382]

    На основе результатов, полученных в предыдущих главах, здесь будет рассмотрена детальная схема простой химической реакции — изомеризации. К таким реакциям относятся цис-транс изомеризация олефинов и некоторые аллильные перегруппировки, например перегруппировка винилаллиловоги эфира [1] СНа = СН—О — СНд — СН = СНз ДО аллилацетальдегида СНз = СН — СНз — СНз — СНО. Было установлено, что эти реакции являются гомогенными и подчиняются уравнению первого порядка. [c.204]


    При реакции натрийамила с трет-бутилбромидом образуется 2,2-диметилгептан с выходом всего лишь 5,5% [94]. Взаимодействием порошкообразного натрия с эфирным раствором 2-бромпентана получается 4,5-ди-метилоктан с выходом только 16% [19]. Реакция между натрийбутилом и 2-бромоктаном дает ожидаемый парафин с выходом 35% [77]. При реакции между натрием и 3-хлор-2-метил-1 бутеном происходит аллильная перегруппировка и продукт содержит лишь 20% ожидаемого диена [1031  [c.403]

    Интересен факт, что те же хлориды аллильного типа, т. е. бутенил-(кротил)хлориды и изопренгидрохлорид конденсируются под действием карбонила никеля при комнатной температуре с образованием диенов с хорошим выходом. В этих реакциях в качестве растворителей могут быть использованы спирты. Это послужило основанием для заключения, что механизм реакций не включает промежуточных ионных соединений, например, ионов карбония или карбависнов [133]. В эту реакцию, по-видимому, могут вступать только те хлористые аллилы, которые легко претерпевают аллильную перегруппировку. Несмотря на высокие выходы диенов по этому способу, его нельзя рекомендовать как хороший препаративный метод в связи с трудностями и опасностью, возникающими нри работе с карбонилом никеля  [c.411]

    Теперь несколько слов об особенностях изогипсических трансформаций аллнльпых систем уроиня окислеиия 2, т. 0. производных типа 107. Нуклеофильное замещение т рупп X л этих системах моя ет происходить и по С-1, п по С-.) с миграцией двойной связи (аллильная перегруппировка). При необходимости эту реакцию можно провести как в том, так и и другом паправлении вполне селек- [c.112]

    Однако есть примеры реакций, относительно которых с большим основанием можно утверждать, что они протекают по механизму SnI Так, при взаимодействии бутен-2-ола-1 с тионил-хлоридом образуется исключительно продукт аллильной перегруппировки — З-хлорбутен-1  [c.145]

    Аллильные субстраты особенно легко вступают в реакции нуклеофильного замещения (разд. 10.11), однако их обсуждению посвящен специальный раздел, поскольку эти реакции, как правило, сопровождаются перегруппировкой, известной под названием аллильной перегруппировки или аллильного сдвига. При взаимодействии аллильных субстратов с нуклеофилами в условиях проведения реакций SnI обычно получают два продукта продукт нормального замещения и продукт перегруппировки  [c.51]

    Нуклеофильное замещение у аллильного атома углерода может происходить и по механизму Sn2, при котором аллильная перегруппировка обычно не наблюдается. Но и в условиях осуществления реакции по механизму Sn2 аллильная перегруппировка возможна. Был предложен SN2 -MexaHH3M, согласно которому нуклеофил атакует у-атом углерода, а не атом в обычном положении  [c.53]

    Значительно раньше стала известна реакция сочетания алкилгалогенидов с реактивами Гриньяра (обзор см. [1020]). Реактивы Гриньяра обычно обладают тем преимуществом, что их легче приготовить, чем соответствующие Кг СиЫ, но реакция обладает значительно более узким диапазоном применимости. Реактивы Гриньяра вступают в реакцию сочетания только с реакционноспособными галогенидами — аллилгалоге-нидами (хотя в этом случае часто встречаются аллильные перегруппировки) и бензилгалогенидами. Реакция идет также и с третичными алкилгалогенидами, но выходы продуктов низки (от 30 до 50%). При использовании реактивов Гриньяра, содержащих ароматические группы, выходы продуктов значительно выше по сравнению с выходами алкилпроизводных. Кроме того, поскольку реактивы Гриньяра взаимодействуют с группами С = 0 (т. 3, реакции 16-30 и 16-33), их нельзя применять для сочетания с галогенидами, содержащими в молекуле кетонную, сложноэфирную или амидную функциональные группы, И хотя сочетание реактива Гриньяра с обычными алкилгалогенидами не находит, как правило, применения в синтезах, небольшие количества симметричных продуктов сочетания часто получаются при приготовлении самого реактива. Высоких выходов при сочетании реактива Гриньяра с алкилгалогенидами (см. обзор [1021]) можно добиться при использовании катализаторов, таких, как соли меди(1), которые позволяют проводить сочетание реактивов Гриньяра с первичными алкилгалогенидами с высокими выходами [1022] (возможно, интермедиатами здесь являются медьорганические соли), комплексы железа(П1) [1023] или палладия [1024], а также соли меди(II) [1025], под дейст- [c.190]

    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]


    Диалкилкупраты лития вступают в реакцию сочетания с аллилацетатами, давая в зависимости от природы субстрата либо продукты нормального сочетания, либо продукты, получающиеся в результате аллильной перегруппировки [1095]. Предполагается, что реакция идет по механизму, включающему образование о-аллильного комплекса меди [1096]. В случае пропаргильных субстратов образуются аллены [1097]. Аллены получаются также [c.198]

    Продукт перегруппировки часто преобладает., В случае РгСиЫ и ациклических субстратов аллильная перегруппировка — это практически исключительный путь реакции [1117]. Двойная связь эпоксида винильного типа может быть частью енолят-иона, если субстрат имеет циклическую структуру. И в этой [c.200]

    Обычно в реакцию вводят субстраты, в которых две группы Z соединены с группой СНг. В таких случаях алкилирование можно провести дважды вначале основание отщепляет протон, затем RX алкилирует образующийся ион, после чего протон отщепляется от Z HRZ и, наконец, происходит алкилирование получающегося енолят-иона тем же или другим RX. Реакция успешно идет с первичными и вторичными алкильными, аллильными (здесь возможна аллильная перегруппировка) и бензильными RX, но не идет с третичными алкилгалогенидами, так как в условиях проведения этой реакции происходит элиминирование (см., однако, ниже). RX может содержать различные функциональные группы, устойчивые к действию основания. Среди побочных реакций, осложняющих этот процесс, уже упоминавшееся конкурентное 0-алкилирование, элиминирование (если енолят-ион сам представляет собой достаточно сильное основание) и дмалкилирование. Один из способов подавления как О-алкилирования, так и диалкилирования состоит в прове-денпи реакции в присутствии фторида тетраалкиламмония. [1129]. [c.202]

    Рассматриваемая реакция, которую часто называют прото-тропной перегруппировкой, служит примером электрофильного замещения, сопровождаемого аллильной перегруппировкой. Ее механизм заключается в отрыве протона основанием с образованием резонансно стабилизированного карбаниона, который взаимодействует далее с протоном по тому положению, которое обеспечивает получение более устойчивого олефина [50]  [c.423]

    При обработке соединений, содержащих двойную связь, диоксидом селена группа ОН вводится в аллильное положение (см. т. 4, реакцию 19-16) [140]. Реакция обычно сопровождается аллильными перегруппировками. Имеются указания на то, что механизм реакции не включает образование свободных радикалов, но две стадии (А и Б) представляют собой перицикли-ческие реакции [141]  [c.79]

    Хлор-1-бутен реагирует со спиртом (очень слабый нуклеофил) по механизму 5jyl. В этих условиях имеет место аллильная перегруппировка. С этилатом натрия (сильный нуклеофил) реакция идет в одну стадию по механизму Sjv2. [c.221]

    Рассмотрены реакции олигомеров е-аминокапроновой кислоты для получения иминов с широким спектром медико-биологической активности. Так, оротовый альдегид образует имины с указанными олигомерами, обладающие высокой антивирусной и антитоксичной активностью. Установлено, что каталитическая реакция аллилового спирта и его сложных эфиров с е-капролактамом сопровождается аллильной перегруппировкой. что способствует олигомеризации аллиловым спиртом и получению Ы-ацилпроизводных аллилтовых эфиров е-аминокапроновой кислоты. [c.53]

    Присоединение ацетиленид-иона. Интересна реакция присоединения ацетиленид-иона к карбонильным соединениям. Превращение проводят обычно в жидком аммиаке в присутствии амида натрия для перевода ацетилена в соответствующий карб-лнион (см. стр. 253). Гидрирование образующегося ацетиленового карбинола ХХУП на катализаторе Линдлара (частично отравленный палладий) приводит к олефину ХХУП1, который претерпевает катализируемую кислотой аллильную перегруппировку (см. стр. 50) и образует первичный спирт XXIX  [c.214]

    Повышенная сктонность третичных алли.тьных производШ)1х претерпевать аллильную перегруппировку в ходе ну-клеофильного замещения позволила разработать один из самых надежных способов удлинения углеродной цепи, ключевыми стадиями которого являются а) синтез третичного аллильного карбинола из кетона по обычной схеме реакции Гриньяра, б) превращение гидроксильной функции в более легко уходящую группу (например, ацилокси) и в) сочетание полученного производного с алкиллитийкупрат-ным реагентом (см. схему 2.54), [c.141]

    Робертс (1953) расширил область применения этой реакции, осуществив циклоприсоединение фенилацетилена к фторированным олефинам, и нашел способ последующего удаления атомов галоида. Так, при конденсации фенилацетилена с 1,1-дихлор-2,2-дифторэтиленом образуется производное циклобутена I. При дейстзии на соединение I серной кислоты происходит гидролиз атомов фтора и получается 2,2-дихлор-енон II, который в присутствии триэтиламина претерпевает аллильную перегруппировку с образованием изомерного 2,4-дихлоренона III  [c.33]

    Таким образом, реакция заключается в миграции аллильной группы с одновременной аллильной перегруппировкой этой группы. В дальнейшем оказалось, что способы, предложенные Клайзеном для получения обоих изомеров, носят общий характер. Аллиловые эфиры, требующиеся для превращения в соединения типа II, получают взаимодействием бромистого аллила с фенолом в растворе ацетона в присутствии карбоната калия, добавленного для нейтрализации выделяющейся в процессе реакции бромистоводородной кислоты (выход аллилового эфира фенола 86—97%). С другой стороны, реакция между бромистым аллилом и безводным фенолятом калия, суспендированным в бензоле, приводит, главным образом, к С-аллильным производным типа III. Ацетон как полярный растворитель благоприятствует 0-аллилированию, а неполярный бензол — С-аллилированию. [c.314]

    Из термического разложения а-метилаллилбензилсульфона I, приводящего к образованию 5-фенилпентена-2 (III) и двуокиси серы следует, что в процессе реакции происходит аллильная перегруппировка аллильного радикала, совершающаяся через циклическое переходное состояние II  [c.317]


Смотреть страницы где упоминается термин Аллильные перегруппировки реакция: [c.126]    [c.112]    [c.135]    [c.53]    [c.54]    [c.69]    [c.112]    [c.167]    [c.169]    [c.176]    [c.179]    [c.192]    [c.197]    [c.198]    [c.199]    [c.201]    [c.293]    [c.89]    [c.167]    [c.124]    [c.111]    [c.275]   
Пространственные эффекты в органической химии (1960) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Аллильная перегруппировка как часть ферментативных реакций

Аллильные перегруппировки

Аллильные перегруппировки в реакциях Гриньяра

Аллильные перегруппировки при реакциях аллилгалогенидов

Аллильные перегруппировки реакция пространственные влияния при

Аллильные перегруппировки реакция стереохимия

Молекулярные перегруппировки при реакциях замещения в ряду галогенопроизводных и спиртов аллильного типа

Молекулярные перегруппировки при реакциях замещения в ряду галогенпроизводных и спиртов аллильного типа



© 2024 chem21.info Реклама на сайте