Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилсульфонаты, реакция

    Оба метода получения алкилсульфонатов (реакциями сульфохлорирования и сульфоокисления) имеют свои достоинства и недостатки. При первом расходуется много щелочи и хлора, который бесполезно теряется в виде трудно используемых отходов. В этом отношении сульфоокисление более выгодно, но зато при нем растет потребление сернистого ангидрида и побочно образуется серная кислота, а при двухстадийном процессе требуется дополнительно уксусный ангидрид (около 90 кг на 1 г сульфоната). Все сказанное привело к тому, что процессы сульфохлорирования и сульфоокисления получили примерно одинаковое распространение в промышленности. [c.466]


    Схема процесса сульфоокисления по этому методу представлена на рис. 13.2. Методы получения алкилсульфонатов с помощью реакций сульфохлорирования и сульфоокисления распространены в промышленности примерно одинаково. [c.433]

    В случае окиси циклопентена эта реакция не дает удовлетворительных результатов. В патентной литературе встречается утверждение, что алкилсульфонаты образуются при действии сульфокислот на олефины [195], однако чистых продуктов реакции в этом случае выделено не было. Ни по одному из существующих методов не удалось синтезировать третичного алкилсульфоната. [c.344]

    Изучение влияния связанных с ароматическим ядром замещающих групп [9в] на скорость гидролиза алкилсульфонатов показало, что нитрогруппа значительно ускоряет, а стоящая в пара-положении метильная группа замедляет гидролиз. При этих исследованиях эфиры растворялись в 30%-ном спирте, содержавшем небольшое количество щелочи скорость гидролиза измерялась дри 25°. Результаты этих опытов, приведенные в табл. 19, вместе с аналогичными результатами, полученными для реакции этилового зфира п-бромбензолсульфокислоты со спиртом (см. следующий [c.359]

    Алкилсульфонат Константа скорости реакции, К Щелочность раствора  [c.359]

    Реакции с солями металлов. Алкилсульфонаты легко реагируют с солями минеральных и органических кислот. Некоторые из этих реакций служат удобными методами синтеза сложных эфиров. [c.366]

    Количество образовавшегося галоидалкила и углеводорода лишь в редких случаях соответствует более чем магнийорганического соединения или алкилсульфоната. В результате побочной реакции образуются варьирующие количества сульфона [213 б, 234]  [c.369]

    Алкилсульфонаты получают с помощью реакций сульфохлорирования или сульфоокисления предельных углеводородов (С12— ie) и последующим омылением (см. с.. 53)  [c.340]

    Алкилсульфонаты обладают слабой моющей способностью в нейтральных растворах. Щелочная реакция среды улучшает их моющую способность. [c.431]

    Реакции по атому S. С.о.-более слабые основания. Чем простые эфиры, но обладают большей нуклеофильностью. С разл. электроф. реагентами (к-ты Льюиса, соли тяжелых металлов) образуют донорно-акцепторные комплексы. Р-ция С. о. с алкилиодидами, диалкилсульфатами и алкилсульфонатами, а также со спиртами в присут. к-т приводит к солям сульфония (см. Сульфониевые соединения), напр. RR S + R"X [RR SR"] X . С. о., содержащие винильную или арильную группу либо Hal, или др. электроноакцепторную группу в о- и даже р-положениях, менее склонны к комплексообразованию. [c.460]

    Оба метода получения алкилсульфонатов (реакциями сульфохлорирования и сульфоокисления) имеют свои достоинства и недостатки. При первом расходуется много ш,елочи и хлора, который бесполезно теряется в виде трудно используемых отходов. В этом отношении сульфоокнсление более выгодно, но зато при нем растет потребление сернистого ангидрида и побочно образуется серная кислота, а при двухстадийном процессе требуется дополнительно уксусный ангидрид ( =90 кг на 1 т сульфоната). Все сказанное привело к тому, что процессы сульфохлорирования и сульфоокисления получили примерно одинаковое распространение н промышленности. Из-за отмеченных недостатков и пониженных моющих свойств получаемых алкилсульфонатов оба метода имеют сравнительно небольшое значение — на них приходится лишь 3— 5% от общего производства анионоактивных ПАВ. [c.342]


    Семикарбазоны метилкетонов имеют наивысшую температуру плавления и труднее всех растворяются в органических растворителях. Семикарбазоны кетонов, у которых кетогруппы расположены ближе к середине цепи, растворяются гораздо легче. Поэтому семикарбазон метилкетО На, находяпгегося в смеси с другими изомерами, можно легко выделить в чистом виде кристаллизацией, все другие изомеры остаются в маточном растворе. Следовательно, селективность проявляется дважды первый раз при реакции с семикарбазидом и второй раз при перекристаллизации. Если проследить за выходами, сраэу будут заметны значительные потери. К тому же еще обнаружилось, что если заместитель находится в положении 2, растворимости натриевых солей алкилсульфатов и алкилсульфонатов в органических растворителях чрезвычайно малы, в то время как другие изомеры растворяются относительно легко. Так, из смеси различных изомерных алкилсульфатов или алкилсульфо-катов можно экстрагировать хлороформом, метилэтилкетоном или амиловым спиртом все изомеры, кроме 2-алкилсульфата или 2-алкилсуль-фоната, которые остаются нерастворимыми [84]. Алкилсульфонаты, у которых гидрофильная группа находится у второго атома углерода, негигроскопичны другие же изомеры сильно притягивают влагу и на воздухе расплываются. [c.567]

    Таким образом, использование этого дешевого реагента более или менее ограничено необходимостью применения апротонных растворителей, но в отсутствие краун-эфиров он частично растворим только в одном органическом растворителе — ДМСО. Для приготовления бледно-желтого 0,15 М раствора КОг может быть использован 0,3 М раствор дициклогексано-18-крауна-б в ДМСО [576]. В большинстве случаев использование бензола более целесообразно, чем ДМСО, потому что применение бензола устраняет потенциально существующие сложности при использовании ДМСО-аниона [577]. Комплекс КОг с ди-циклогексано-18-крауном-6 растворим в бензоле до концентрации 0,05 моль/л [577]. В присутствии 18-крауна-б могут быть получены растворы КОг в ДМФА, ДМЭ и даже эфире [578]. Стабильные растворы тетраэтиламмонийсупероксида в апротонных растворителях были приготовлены путем электрохимического генерирования [579, 587], а недавно показано, что супероксид может быть активирован межфазным катализатором аликватом 336 [1016]. Ряд исследователей использовали нуклеофильные свойства супероксида. Сравнение реакционной способности К1 и КОг (0,5 М) по отношению к 1-бромоктану (0,5 М в ДМСО) в присутствии 18-крауна-б (0,05 М) показало, что периоды полупревращения равны примерно 20 ч и 45 с соответственно [580]. Таким образом, супероксид является супернуклеофилом . Разные авторы сообщают о различном строении продуктов реакции алкилгалогенидов и алкилсульфонатов в зависимости от условий. [c.391]

    В качестве эмульгаторов наибольшее распространение получили анионоактивные вещества. Г1 зависимости от pH среды применяют соли щелочных металлов, алкилсульфаты и алкилсульфонаты, мыла жирных кислот, Алкилсульфаты образуют стабильные эмул-ьсии мономера в кислой среде, поэтому их можно применять при полимеризации в присутствии окислительно-восстановительных систем. Стабильность эмульсии повышается также при применении смеси различных эмульгаторов и последовательного введения их в зону реакции. [c.26]

    Технология получения алкилсульфонатов. По технологии у реакции су льфохлорирования имеется много сходства с жидкофазным радикально-цепным хлорированием парафинов (стр. 112). Процесс осуществляют главным образом фотохимическим способом в кэлонных аппаратах, снабженных по всей высоте устройствами для облучения смеси ртутно-кварцевыми лампами. Проверен и радиационнохимический метод с у-облучением источником °Со. При непрерывном производстве часто применяют единичную барботажную колонну, хотя из-за развития обратного перемешивания при барботированни газа в таком аппарате несколько ухудшается состав реакционной смеси. Предложено проводить процесс и в каскаде барботажных аппаратов или в секционированной колонне с тарелками. [c.339]

    Технологическая схема получения алкилсульфонатов способом фотохимического сульфохлорирования изображена иа рис. 98. Хлор, полученный испарением жидкого хлора, и газообразный SO2 в 5%-нэм избытке подают в низ сульфохлоратора I через распределительные трубы они барботируют через слой жидкости, за-полнякщей колонну. Туда же вводят свежую парафиновую фракцию и непревращенный углеводород, отделенный от продукта. Тепло реакции снимается в выносном холодильнике 2, через который реакционную смесь прокачивают насосом 3. Отходящие из колонны газы состоят из НС1 и непревращенного SO2. Они поступают I. блок очистки 4, выполненный так же, как в процессах хлори[ования в нем НС1 поглощают водой с получением концент- [c.339]

    ВЗЯТЬ не Б большом избытке, нагревание смеси с обратным холодильником приводит к образованию некоторого количества сложного эфира. Сообщение о получении алкилсульфонатов при нагревании сульфохлорида со спиртом [145] показывает, что в данном случае взято эквимолекулярное количество спирта или реакция велась короткое время. н-Пропиловый и н-бутиловый эфиры п-толуолсульфокислоты с выходом 25—30% получены при нагревании с обратным холодильником сульфохлорида с 10%-ным избытком спирта [146]. При пропускании сухого воздуха через смесь п-толуолсульфохлорида и и-пропилового спирта при 100—125° с целью удаления образующегося хлористого водорода [147] получается около 70% сложного и около 5% простого эфиров. К реакционной смеси добавляется небольшое количество углекислого натрия для нейтрализации п-толуолсульфокислоты, могущей образоваться в результате побочной реакции. Другим побочным продуктом является, повидимому, хлористый этил, хотя он и не упоминается в сообщении. При нагревании бензолсульфохлорида и метилового спирта в запаянной трубке до 160° единственными продуктами реакции получаются хлористый метил и бензолсульфокислота [144]. Вторичные и третичные спирты, вероятно, легче превращаются в хлориды при действии сульфохлоридов, чем первичные спирты, однако опытных данных по этому вопросу не имеется. Наличие й-атома хлора в молекуле спирта как будто уменьшает побочные реакции, и при нагревании с обратным холодильником п-толуолсульфохлорида и избытком этиленхлоргидрина образуется не простой эфир или дихлорэтан, а сложный эфир [148]. Такое же действие оказывает цианогруппа — при кипячении ксилольного раствора Р-цианоэтилового. спирта с п-толуолсульфохлоридом в течение нескольких часов образуется соответствующий сложный эфир с выходом 65% [149]. [c.336]


    Добавление щелочи к смеси сульфохлорида и спирта значительно ускоряет этерификацию и при температурах между О и 15° получаются высокие выходы алкилсульфоната [150]. В некоторых случаях более удовлетворительные результаты получены при проведении реакции в эфирном растворе, причем добавлялась щелочь к безводной реакционной смеси [151] или вносился сульфохлорид в эфирный раствор алкоголята натрия [130 г, 152]. В качестве растворителя для этой реакции применялся также бензол [153]. Реакцию можно провести и с помощью третичного амина. Из бензолсульфохлорида получен в присутствии триметиламина этилсульфонат [154]. Многие другие алкилеульфонаты синтезированы с применением пиридина в качестве акцептора хлористого водорода [153, 155]. Тосилирование [156] углеводов удобнее [c.336]

    В табл. 18 приведены алкилсульфонаты, их важнейшие физические свойства и методы получения. В графе Метод получения цифра I означает взаимодействие сульфохлорида со спиртом, II — реакцию серебряной соли сульфокислоты с иодистым алкилом, III — реакцию натриевой соли сульфокислоты с диалкилсульфа-том, IV — окисление эфира сульфиновой кислоты перманганатом калия и V — прочие методы. [c.345]

    Реакции алкилсульфонатов. Алкилсульфонаты легко поддаются гидролизу, пиролизу и являются энергичными алкилирующими агентами по отношению к различным типам органических соединений. Они наполшнают диалкилсульфаты с тем исключением, что обладают большей тенденцией к образованию продуктов восстановления. В отличие от галоидоалкилов (за исключением иодистого метила) реакция алкилсульфонатов с магнийорганическими соединениями приводит не к продуктам диспропорционирования, а к возникновению новой связи между углеродными атомами. Алкилсульфонаты реагируют с большинством соединений энергичнее, чем иодалкилы, и поэтому позволяют проводить алкилирование при более низкой температуре, что предотвращает течение побочных реакций. Так как в диалкилсульфатах подвижна только одна алкильная группа, применение алкилсульфонатов особенно выгодно при работе с труднодоступными алкилами. В настоящее время в продаже имеется ряд алкил-л-толуолсульфонатов, и некоторые из них сделались довольно дешевыми лабораторными реактивами. [c.345]

    Реакции пиролиза. При термическом разложении алкилсульфонатов (за исключением метилсульфонатов) образуются сульфокислота и олефин или продукт его полимеризации. Метиловые эфиры бензол- и л-толуолсульфокислот перегоняются практически без разложения при 280—290°, тогда как из этилового эфира бензолсульфокислоты получаются почти количественно бензолсульфокислота и этилен [197]. Олефины являются главными продуктами пиролиза р-хлор этилового и р,Р -дихлоризопропилового эфиров бензолсульфокислоты, но выходы ниже, чем в предыдущем случае. Аллиловые и бензиловые эфиры дают продукты полимеризации. Если разложение бензиловых эфиров проводится в ароматическом растворителе, может иметь место бензилированив последнего. Реакция идет лучше всего в интервале 110—140° и сопровождается выделением тепла. При нагревании с обратным холодильником бензилового эфира бензолсульфокислоты с избытком [c.345]

    Реакции со спиртами. Алкилсульфонаты реагируют со спиртами с образованием простых эфиров или олефинов в зависимости от природы алкильной группы и спирта  [c.360]

    Метиловый и этиловый эфиры л-толуолсульфокислоты дают с водным раствором иодистого калия в одинаковых условиях 85 и 67% соответствующих иодалкилов [222, 226]. Выход бромистого этила такой же, как и иодистого. При синтезе цианистого метила и этила, нитрометана и нитроэтана метильные соединения всегда получаются с более высокими выходами. При изучении реакции н-бутилового и цетилового эфиров л-толуолсульфокислоты [2156] с водным раствором цианистого калия оказалось, что в одинаковых условиях выходы цианидов составляли, соответственно, 46 и 84, т. е. высшие алкилсульфонаты более реакционноспособны и труднее вступают в побочные реакции, чем ближайшие гомологи метилсульфоната. Было бы очень желательно получить больше данных по этому вопросу. [c.366]

    Реакции и применение арил сульфонатов. По своему отношению к гидролизующим агентам арилсульфонаты резко отличаются от алкилсульфонатов. Фениловый эфир бензолсульфокислоты медленно гидролизуется кипящим водным раствором едкого кали [250],однако алкоголят натрия энергично реагирует при комнатной температуре с фениловым эфиром п-толуолсульфокислоты в спиртовом растворе с образованием фенетола. Это превращение, вероятно, пдет в две стадии [251]  [c.386]

    Проектная схема получения присадки включает следующие стадии сульфирование фенола серной кислотой с целью получения катализатора алкилирования алкилирование фенола полимер-дистиллятом в присутствии продуктов сульфирования, которые остаются в готввой присадке в виде алкилсульфонатов кальция нейтрализацию продуктов алкилирования гидроокисью кальция удаление из продуктов реакции воды и полимер-дистиллята конден-с цию алкилфенолята кальция и алкилфенола в щелочной ореде водным раствором формальдегида отделение механических примесей и сушку присадки. [c.322]

    В присутствии поливинилсульфатов [70]. Введение полианиона в реакцию (3.11) приводит к ее ускорению примерно в 10 раз. Механизм ускорения заключается в том, что в результате сорбции катионов реагентов на полианионе происходит их сближение (концентрирование). На реакцию (3.11) оказывают каталитическое влияние также анионные мицеллы алкилсульфонатов, причем в мицеллярной системе наблюдаются те же явления (величина ускорения, ингибирование про-тивоионами), что и в полимерной [71]. [c.106]

    При реакции сульфохлорирования, кроме моносульфохлоридов, образуются также дисульфохлориды. Соотношение между моно- и дисульфохло-ридами зависит от глубины сульфохлорирования [77, 79]. Так как дисульфонаты обладают значительно более низкими поверхностно-активными и моющими свойствами, чем моносульфопаты, то при производстве высокосортных алкилсульфонатов стремятся путем снижения глубины реакции сульфохлорирования добиться минимального образования дисульфохлоридов. [c.432]

    Алкилсульфонаты (обычно тозилаты) можно превратить в амины действием аммиака или другого амина. Для проведения реакции с низкокипящими реагентами, такими, как аммиак и простейшие амины, необходимо давление. При реакции с более высококипящими аминами, типа пиперидина, достаточно простого кипячения [44]. Этот метод с успехом применялся в ряду стероидов [45, 46] и сахаров [47, 48]. При взаимодействии аммиака и экваториальных сложных эфиров сульфокислот в стероидных, декалильных и циклогек- [c.509]

    С помощью реакций нуклеофильного замещения удобно получать н многие другие типы органических соедииениГ примеры приведены на схеме 5,4. Следует отметить, что чаще всего для синтетических превращений используют субстраты, которые реагируют по механизму прямою замещения, т. е. первичные и незатрудненные вторичные алкилга-логениды н алкилсульфонаты. Тенденция к элиминированию особенно резко выражена в третичных алкильных системах, что ограничивает использование реакций нуклеофильного за.мещеиия для синтетических превращений, включающих эти системы. [c.228]

    В ряду алифатических карбокатионов их стабильность уменьшается в ряду третичный > вторичный > первичный. -Механизм реализуется для третичных и вторичных, но не первичных алкилгалогенидов и алкилсульфонатов. Действительно, сольволиз /ирет-бутилбромида по механизму 5 лг1 в полярном (е =58) и ио-низрфующем растворителе - муравьиной кислоте идет в 1 ООО ООО раз быстрее, чем мзо-нронилбромида. Подобное соотношение скоростей для третичных и вторичных кг является характеристичттьтм для многих сольволитических 5 1-реакций. [c.744]

    Диалкилсульфаты, алкилсульфонаты и нитраты. Как диметил-, так и диэтилсульфат широко испоЛ. говались для алкилирования вссх типов активных метиленовых соединений, Выходы, получаемые с этими алкилирующими агентами и с соответствующими йодистыми алкилами, обычно одинаковы. Следует также отметить, что высокие температуры кипения диалкилсульфатов позволяют проводить реакцию при более высоких температурах без потери алкилирующего агента 1249].  [c.160]

    Получение иодалканов из спиртов или олефинов часто протекает с плохими выходами по этой причине их лучще синтезировать путем нуклеофильного обмена из алкилсульфонатов либо из хлор- или бромалканов (реакция Финкельщтейна) (Б-11). [c.65]

    В основе получения простых эфиров [1] лежит старый синтез Вильямсона, согласно которому алкоголяты и феноляты вводятся в реакцию с алкилгалогенидами, алкилсульфонатами или диалкилсульфа-тами (соответственно Г-1, синтез краун-эфиров М-28, 0-16, К-46а). Указанные реакции алкилирования осуществимы в условиях межфазно-го катализа (Г-2). Основным способом получения симметричных диал-килэфиров является отщепление воды от спиртов концентрированными кислотами. Новый более простой метод [2] заключается в гладком взаимодействии спиртов с алкилгалогенидами в присутствии ацетил-ацетоната никеля. [c.83]


Смотреть страницы где упоминается термин Алкилсульфонаты, реакция: [c.681]    [c.342]    [c.368]    [c.370]    [c.510]    [c.714]    [c.714]    [c.936]    [c.1119]    [c.1331]    [c.125]    [c.151]    [c.169]    [c.391]    [c.635]   
Химия ацетилена (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилсульфонаты

Алкилсульфонаты реакции с соединениями серы

Алкилсульфонаты реакции с солями галогеноводородных

Алкилсульфонаты реакции с цианидами металлов

Алкилсульфонаты, реакции с литийалюминийгидридом

Алкилсульфонаты, реакции с литийалюминийгидридом кислот

Алкилсульфонаты, реакция ацетиленидами

Натрий ацетиленид, реакция с алкилсульфонатами



© 2025 chem21.info Реклама на сайте