Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обменная спектроскопия

    ЯМР-спектроскопия представляет собой перспективный метод исследования. Она позволяет фиксировать образование промежуточных продуктов химических реакций (ионов, промежуточных комплексов, сольватов и др.). По интенсивности сигналов ЯМР в ходе не очень быстрых реакций уда -ется следить за изменением концентрации веществ. ЯМР-спектроскопия широко применяется для изучения скоростей и активационных параметров обменных процессов, при которых периодически меняется магнитное окружение ядер. [c.128]


    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    Применение методов спектроскопии ЭПР в химических исследованиях весьма разнообразно. Но грубо можно говорить о двух направлениях— одном, касающемся в основном структурных аспектов, и другом — динамики процессов. К первому относится изучение структуры органических, неорганических и комплексных радикалов и ион-радикалов, парамагнитных центров в твердых телах и т. д., а ко второму — изучение механизмов и кинетики химических реакций, обменных процессов и т. д. [c.68]

    Спектроскопия ЯМР широко и успешно применяется для исследования равновесных химических превращений и обменных процессов, при которых периодически меняется строение, а значит, электронное окружение магнитных ядер и спин-спиновое взаимодействие ядер, т. е. химические сдвиги б и константы /. К таким процессам относятся как внутримолекулярные превращения (заторможенное внутреннее вращение, инверсия пирамидальной системы связей у азота, инверсия циклов, таутомерия и т. д.), так и межмо-лекулярные обменные и другие равновесные химические реакции (протонный обмен в водных растворах карбоновых кислот, аммиака, лигандный обмен, рекомбинация ионов, биохимические взаимодействия фермент — субстрат и т. д.). [c.40]

    Полученные при помощи метода 2М обменной спектроскопии данные свидетельствуют о наличии в растворах плоских комплексных соединений кадмия и свинца типа I и II на основе тетрадентатных лигандов быстрых межмолекулярных обменных реакций, протекающих с разрывом связи M-L. [c.131]

    Так как роль адсорбированных форм в катализе до сих пор понята не полностью и все еще вызывает многочисленные споры [3], то очень важно ближе познакомиться с широким кругом методов, используемых в адсорбционных и каталитических исследованиях. Поэтому в гл. 3 уделяется много внимания таким вопросам, как методы приготовления поверхностей, измерения количеств адсорбированных веществ и оценки величин поверхности. Там также рассматриваются пути, позволяющие использовать информацию, получаемую из данных о теплотах и энтропиях адсорбции, для выяснения строения и подвижности промежуточных соединений на поверхностях катализаторов. Кроме того, в гл. 3 проводится исчерпывающий обзор различных методов, позволяющих проводить прямое изучение структуры катализаторов или адсорбированных промежуточных соединений, как, например, изотопный обмен, спектроскопия, измерение работы выхода электрона, дифракция электронов и электронная микроскопия. [c.18]


    Приведен спектр 1-метилурацила в НаО и ОаО. Заметим, что в ОаО полоса амид II вообще отсутствует. Это иллюстрирует еще один путь примеиения инфракрасной спектроскопии, который оказался особенно полезен при изучении белков. Исчезновение полосы амид II при перенесении белка в ОзО дает возможность проследить за обменом протонов, участвующих в образовании водородных связей, в структурированных областях белков [10]. На рис. 13-4 приведен также инфракрасный спектр 1-метилурацила, содержащего 0 в 4-м положении. Обратите внимание на сдвиг полосы амид II на 7 см" , указывающий, что колебания, связанные с изгибом N—Н-связи, в значительной мере сопряжены с валентными колебаниями связей С = 0 и С = С. [c.13]

    Формулой (11.9) обычно и пользуются для оценок УоЛ. АО по константам скоростей обменных процессов, найденным методом динамической спектроскопии ЯМР. [c.41]

    В спектроскопии ЯМР эксперимент обычно проводится при температурах в диапазоне 120...470 К, но не всегда удается исследовать спектры в достаточно широком интервале температур даже этого диапазона, что ограничивает круг изучаемых процессов. Так, даже при нагревании до 200°С (верхний температурный предел, обусловленный конструкционными характеристиками спектрометров) для систем с энергией активации обменного перехода 80... 100 кДж/моль будет наблюдаться лишь начало медленного обмена. [c.43]

    Осложнения при изучении динамических процессов, возникающие из-за наличия спин-спинового взаимодействия, его температурной зависимости (в меньшей степени), одновременно протекающих обменных реакций и некоторых других причин, обходят, применяя методы множественного резонанса и другую технику спектроскопии ЯМР, рассматриваемую ниже. [c.44]

    В пособии изложены основы теории ЯМР, техника эксперимента в ЯМР-спектроскопии, вопросы, связанные с важнейшими понятиями спектроскопии ЯМР химический сдвиг и спин-спиновое взаимодействие, влияние обменных процессов и конформационных переходов молекул на спектры ЯМР, корреляция спектров ПМ1> со строением и реакционной способностью молекул. Акцентируется внимание на новейших достижениях в спектроскопии ЯМР (Фурье-спектроскопия, применение ЛСР и т. д.). [c.2]

    Обменные процессы и спектры ЯМР. Шкала времени в ЯМР-спектроскопии [c.115]

    Применение ЯМР для исследования кинетики пока в основном ограничено обменными реакциями или конфор-мационными превращениями. Недостаточно высокая чувствительность метода не позволяет производить исследование промежуточных продуктов, образующихся в процессе химического превращения, как правило, в небольших концентрациях. В этих случаях часто более пригодными оказываются другие спектроскопические методы (ЭПР, УФ-спектроскопия, люминесценция и др.). В сочетании с этими методами ЯМР является мощным средством решения широкого круга различных проблем, позволяющих глубже понять механизм химических реакций. [c.135]

    В некоторых случаях, когда не исключен анионный обмен между исследуемым веществом, образцы для ИК-спектроскопии готовят путем растирания вещества с вазелиновым маслом. [c.201]

    Сегодня 2М-спектроскопия ЯМР представлена целым рядом рутинных методик, применяемых для облегчения отнесения резонансных линий в спектрах ЯМР и определения молекулярных структур [20,21]. Например, гомоадерная корреляционная спектроскопия ( OSY) и обменная спектроскопия (EXS Y) являются двумя основными методами в структурном анализе химических высокомолекулярных соединений и биологических макромолекул в растворах [1, 21]. [c.46]

    Изучение процесса (49) в интервале температур +40 -70°С средствами обычной двумерной (2М) обменной спектроскопии (рис. 61) с использованием стандартной трехимпульсной последовательности без подавления всех видов когерентностей, представляется невозможным, так как неселективное многоимпульсное возбуждение связанной спиновой системы образца СН3ОН вызывает когерентный перенос намагниченности по цепям скалярной связи (I кросс-пики). [c.128]

    В случае системы связанных спинов полная интерпретация 2М обменных спектров представлялась невозможной без подавления эффектов когерентного переноса намагниченности по каналам скалярной связи, вызываемых вторым и третьим смешивающими 90°-ми радиочастотными импульсами стандартной трехимпульсной последовательности, применяемой в 2М обменной спектроскопии. Это существенно ограничивало возможности метода в исследованиях процессов структурной нежесткости.. [c.134]

    Разработана новая универсальная методика 2М обменной спектроскопии ЯМР, позволяющая использовать температурную зависимость мультиплетной структуры спектров участвующих в обмене ядер (уширение резонансных линий мультиплетов, их коалесценция и движение по полю, усреднение величины наблюдаемой константы скалярной связи и пр.) для изучения обменных реакций, протекающих в связанных спиновых системах, а также приложение разработанной методики к исследованию кинетики и механизмов структурной нежесткости и лиган- [c.134]

    Во многих системах восстановление намагниченности является многоэкспоненциальным. Его анализ является довольно сложным для химического обмена в системах с числом состояний более двух и для спин-решеточной релаксации в многоуровневых системах. В этих случаях методы двумерной обменной спектроскопии (гл. 9) часто позволяют определить скорости химического обмена клв и вероятности релаксационных переходов Wa = Raa между всеми парами собственных состояний la) и 1/3) (см. разд. 2.3.2). [c.249]


    Правда, доказано, что доминирующими центрами адсорбции воды в монтмориллоните и вермикулите являютск поверхностные атомы кислорода и обменные катионы — компенсаторы отрицательного заряда, а саму адсорбцию воды предложено рассматривать как образование аквакомплексов [Ме(Н20) ]+0 , где Ме+ — обменные катионы, 0 — поверхностные атомы кислорода [66]. Тем не менее метод ИК-спектроскопии позволяет выделить в минералах монтмориллонитовой группы четыре вида молекул прочно связанной воды [66, 92, 93]  [c.36]

    Сравнительный анализ возможностей ЯМР-спектроскопии воды на различных ядрах. Несмотря на то что большинство экспериментальных результатов получено на ядрах Н, отмеченные выше сложности, связанные с интерпретацией данных, не позволяют извлекать надежной и однозначной информации о динамике граничной воды. Данные, получаемые на ядрах Н, иногда могут определяться вкладом, связанным с быстрым дей-теронным обменом, что также затрудняет их использование для вычисления динамических характеристик граничной воды [39, 579, 580, 605]. Для этой цели в последнее время все более широко применяется ЯМР-спектроскопия Ю [39, 579]. [c.240]

    Если время релаксации велико, то заселенность верхнего уровня будет возрастать, а интенсивность сигнала ЭПР падать из-за насыщения. При малом времени релаксации линия будет широкой из-за принципа неопределенности. Уширяют сигнал и нерелаксационные процессы, в частности тонкое и сверхтонкое спин-спиновое взаимодействие (см. выше), обменные процессы и др. Что касается обменных процессов, то принципы эффекта являются общими для спектроскопии ЭПР и ЯМР и обсуждались в гл. I, однако при рассмотрении спектров ЭПР должен учитываться не только обмен ядер, но и обмен электронов. [c.66]

    Как всякий физический метод, мессбауэровская спектроскопия имеет свое характеристическое время. Если изучаемое соединение само меняется во времени, т. е. происходят, например, обменные процессы или переходы одной формы соединения в другую, то при этом могут, естественно, меняться как изомерный сдвиг, так и градиент электрического поля на ядре (квадрупольное расщепление) и внутренние магнитные поля. Поэтому важно, как соотносятся времена жизни разных форм образца (частота их перехода) и характеристическое время метода. Разность частот мес-сбаузровских пере.ходов источника и образца имеет порядок 10 с (порядок величины частотной характеристики изомерного сдвига см. выще). Для того чтобы можно было наблюдать отдельные сигналы и измерять изомерные сдвиги для двух переходящих друг в друга форм образца, частота их перехода не должна превышать 10 С". Таким образом, порядок характеристического времени метода мессбауэровской спектроскопии можно оценить как 10 с. [c.127]

    Интенсивному применению техники ЭПР для обнаружения и исследования электрохимически генерированных (ЭХГ) органических анион- и катион-радикалов положили начало опубликованные в 1961—1962 гг. работы А. Маки и Д. Джеске Дж. Френкеля и сотр. Такое сочетание спектроскопии ЭПР с ЭХГ связано с необходимостью учета ряда специфических обстоятельств. Главная особенность ЭХГ состоит в том, что образование радикальных частиц происходит не в объеме раствора, а на границе раздела фаз электрод/раствор и контролируется скоростью диффузионного подвода молекул деполяризатора к поверхности электрода. Тем самым ограничиваются возможности создания в растворе достаточно высокой концентрации ион-радикалов, необходимой для получения надежного спектра. Этот недостаток обычно не удается скомпенсировать увеличением концентрации исходного органического вещества, так как появление обменных взаимодействий ион-радикалов между собой, а также между ион-радикалами и молекулами реагента вызывает уширение линий и приводит к потере СТС. [c.225]

    Исходя из предыдущего примера, можно ожидать, что в спектре смеси будет три сигнала, отвечающих протонам СООН-группы, воды и СНз-группы. Фактически в наблюдаемом спектре имеется только два пика. Положение пика СНд-группы не изменилось, но вместо сигнала протонов воды и карбоксильной группы наблюдается один пик в промежутке между ними — пик, отвечающий смеси. Почему для смеси наблюдается меньше линий, чем для суммы компонентов Почему в одних случаях смесь дает уменьшение числа пиков, а в других — нет Причина состоит в том, что в случае уксусной кислоты происходит реакция, которую мы обычно не замечаем, и не пишем ее уравнение. Она заключается в переходе протона воды в состав карбоксильной группы и, наоборот, легко диссоциирующий протон уксусной кислоты переходит в молекулу воды. Происходит так называемый протонный обмен. Протонный обмен является примером простейшей химической реакции. Его можно заметить и предсказать во всех деталях количественно с помощью ПМР-спектроскопии. По электронным и колебательным спектрам, т. е. в ультрафиолетовой и инфракрасной областях, это сделать не удается. Земетим, что спектр ПМР смеси уксусной кислоты и воды не является простой суммой ПМР спектров компонентов. [c.116]

    Скорость енолизации можио также определять с помощью изотопного обмена. Во М1югих ранних работах использовался метод галогениро-вання, однако поскольку спектроскопия ПМР является теперь очень удобным методом для наблюдения за водородно-дейтериевым обменом, в настоящее время применяют второй из описанных методов. Данные, полученные для ряда кетонов представлены ниже (в ВгО — дноксай с ВС в качестве катализатора данные [ЗОа) в расчете на группу пересчитаны на один атом водорода)  [c.283]

    Метод ЭПР можно также использовать для исследования быстрых обменных процессов с /г> 10 с , при которых две формы дают усредненный сигнал ЭПР. Для этого следует найти условия, в которых осущесIнляется разделение усредненного сигнала, путем изменения рП, концентрации лиганда или понижения температуры. Аналогичные исследования кинетики можно проводить при переходе от раздельных сигналов к усредненному, повышая температуру или изменяя концентрации компонентов. Эти методы широко применяются в ЯМР-спектроскопии и будут рассмотрены более подробно в соответствующем разделе. [c.308]

    Кинетика и механизм большого числа органических реакций связаны с обменом ядер и электронов. При этом происходят характерные изменения мультиплетной структуры спектров ЯМР. Одни линии претерпевают уширение, другие остаются узкими, некоторые сливаются в одну линию. Такого рода изменения в спектре связаны с движением ядер, частоты которых можно сравнить с величиной ламоровой нрецессин каждого ядра. Временной диапазон реакций, которые могут быть зарегистрированы в рамках ЯМР-спектроскопии, достаточно широк. Возможны измерения скоростей процессов с константами скорости в интервале от (й Ю с до к- Ю С" ). В принципе возможны варнанты применения ЯМР для изучения скоростей медленных реакций, например реакций, протекающих только при высоких [c.93]

    Когда время жизни ядер тл и тв сравнимо со временем поперечной релаксацпп Ггл и Т -в., возможен анализ формы липни, на основе которого можно изучать кинетику с помощью ЯМР Спектроскопии. Так как в большинстве случаев Т >Т2, область ЯМР-спектроскопии ограничена медленными реакциями. Гоффман предложил использовать ДР для исследований реакций протонного обмена. Прн обмене протона между состояниями А и В эффективное время жизни о каждой позиции, например А, определяется постояппой времени жизни Т1л  [c.94]

    Рассмотрим несколько примеров применения ЯМР-спектроскопии высокого разрешеиия для изучения кинетики обменных процессов. [c.97]

    Замещения гидроксилов на поверхности слоев другими анионами (фосфат-ион, фтор). Эта возможность подтверждена инфракрасной спектроскопией (А. Бусвелл и Б. Дуденбостел), изотопным обменом (Ч, Мак Аулиф и др.) и потенциометрическим титрованием (А. Вейс и др.). По стерическим соображениям особо благоприятны замещения на фтор (С. Дикман и Р. Брей). [c.65]

    Конечно же, прежде всего ваше вещество должно растворяться в выбранном растворителе. Но растворимость не обязательно должна быть очень высокой, особенно если вы собираетесь регистрировать прогонный спектр. В этом случае 1 мг вещества в 0,4 мл растворителя вполне достаточно для получения хорошего спектра на приборе со средним и сильным полем. Растворитель может повлиять на получаемые результаты еще несколькими путями. При наблюдении протонов и углерода сигналы растворителя могут закрывать некоторые области спектра. Вязкость растворителя влияет на разрешение в спектре, особенно при работе с протонами. Некоторые растворители, например вода и метанол, содержат способные к обмену атомы водорода, что не позволяет наблюдать сигналы обменивающихся протонов в изучаемом веществе. Если планируются температурные эксперименты, то необходимо учесть температуры кипения и замерзания растворителей, равно как и возможные температурные изменения растворимости исследуемого вещества. Растворители ароматической природы, такие, как бензол и пиридин, могут вызывать большие изменения химических сдвигов в спектре растворенного вещества по сравнению со спектрами, полученными при использовании неароматических растворителей. Интедсивность н ширина сигнала дейтерня от растворителя могут оказывать влияние на результаты некоторых экспериментов, таких, как, например, разностная спектроскопия. И наконец, цены иа дейтерироваиные растворители различаются очень сильно, что может оказаться важным ( ктором при выборе методик для ежедневного приготовления и измерения спектров большого числа образцов. От тщательного учета всех перечисленных факторов может во многом зависеть успех всего эксперимента. [c.55]


Смотреть страницы где упоминается термин Обменная спектроскопия: [c.341]    [c.121]    [c.383]    [c.273]    [c.4]    [c.272]    [c.108]    [c.178]    [c.327]    [c.1806]    [c.342]    [c.294]   
Современные методы ЯМР для химических исследований (1992) -- [ c.341 ]

ЯМР в одном и двух измерениях (1990) -- [ c.579 ]




ПОИСК







© 2024 chem21.info Реклама на сайте