Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции химические продуктов

    Уравнение (УП1-156) показывает, что скорость обратимой реакции первого порядка можно представить как линейную функцию удаленности системы от состояния химического равновесия, выраженную с помощью разности концентраций продукта в состоянии равновесия и в текущий момент. Эта разность концентраций называется движущей силой реакции. Если величину, обратную константе скорости к, принять за сопротивдение прохождению реакции, то скорость реакции, определяемая уравнением (УП1-156), равна частному от деления движущей силы на сопротивление. По мере протекания реакции концентрация продукта в системе возрастает, а движущая сила понижается. Когда система достигнет состояния химического равновесия, движущая сила и скорость реакции будут равны нулю. [c.242]


    Не следует противопоставлять химическую кинетику и химическую термодинамику. На основе термодинамических закономерностей проектировщик, инженер или исследователь устанавливает в целом наиболее благоприятную, с точки зрения выхода целевого продукта, область протекания химических реакций. Химическая же кинетика позволяет в термодинамически разрешенной области рассчитать концентрации (не равновесные, а кинетические) продуктов реакций, материальный баланс, геометрические размеры реакционных аппаратов и оптимизировать технологические параметры процессов. [c.15]

    Названия большинства процессов не требуют дополнительных пояснений поясним лишь название реакционно-отделительные процессы. Здесь имеются в виду такие процессы, в которых в результате химической реакции образуются продукты, Отличающиеся по свойствам от исходных реагентов настолько резко, что все они или некоторые из них практически количественно уходят из [c.187]

    Первая из них — обычный процесс развития цепи, тогда как вторая включает процесс переноса цепи аллильным водородом. Если далее предположить, что получающийся (очень стойкий) аллильный радикал не способен начать другую цепь, но находится в системе до тех пор, пока не столкнется с другим радикалом, то подтверждаются наблюдаемые кинетические результаты. Прямого подтверждения механизма путем выделения из конечных продуктов реакции аллильных радикалов не получено, однако предположение, что обрыв процесса включает атаку на аллильный водород, подтверждается тем, что дейтерированный аллилацетат, СН2=СН—СО ОСОСНз, полимеризуется быстрее, чем аллилацетат, давая более высокомолекулярный полимер [16]. Такой изотопный эффект является хорошо разработанным методом доказательства, что разрыв отдельной связи является стадией, определяющей скорость химической реакции или продукты, образующиеся при этом. [c.131]

    Полученная активность Мишень Предполагаемая реакция Химический продукт Ожидаемая подвижность к поверхности при прокаливании [c.228]

    Значение катализаторов не только в том, что они позволили увеличить производство основных химических продуктов и открыть возможность выпускать не известную прежде продукцию, но и в том, что они стимулировали развитие новых процессов химической промышленности. 1 1ош,ный толчок получила нефтепереработка и нефте-химня в связи с внедрением в промышленность в качестве катализаторов синтетических модификаций известных ранее цеолитов. При этом цеолитные катализаторы наиболее широко и эффективно зарекомендовали себя ири каталитическом крекинге. Цеолиты находят широкое применение в качестве катализаторов для многих химических реакций, а также как ускорители вулканизации, стабилизаторы синтетических полимеров и т. д. В некоторых реакциях цеолиты используются в качестве носителей. [c.98]


    Извлечение продукта. По окончании реакции химические продукты извлекаются в сепараторе, помещенном на выходе из реактора. Конечный продукт отделяется от непревращенного сырья, всех побочных продуктов, остающихся инертных веществ и различных остатков (катализаторов, примесей). [c.289]

    Смесь горючего исходного материала с окислителем в определенном соотношении, необходимом для осуществления процесса горения с учетом получения заданного продукта, называется горючей смесью. Полученные продукты при осуществлении этих окислительных реакций называются продуктами сгорания. Системная теория печей рассматривает проблемы промышленного оформления процессов безопасного сжигания исходных горючих материалов на базе современной теории горения. Она рассматривает вопросы создания с помощью аэродинамических приемов оптимальных условий для управления процессами сжигания с заданной скоростью, температурой и с получением пламени необходимой геометрической формы, определяющих способ взаимодействия горючего и окислителя и обусловливающих вид процесса сжигания. Она рассматривает возникающие взаимосвязи при горении исходных материалов, совместимость протекания реакции горения топлива с целевыми химическими реакциями в одном объеме, особенности химического взаимодействия между реагентами при химико-технологическом сжигании. Протекание процесса сжигания исходных горючих материалов рассматривается совместно с теплотехническими процессами. Для протекания реакции горения исходных горючих материалов необходимы смесеобразование, организация воспламенения смеси, обеспечение условий распространения пламени и устойчивости горения. [c.29]

    Обратимые реакции. Если продукты химической реакции могут сами реагировать, воспроизводя первоначальные вещества, то наблюдаемая скорость реакции будет уменьшаться по мере накопления продуктов реакции. В конце концов должно быть достигнуто состояние динамического равновесия. В этом состоянии обе реакции, как прямая, так и обратная, имеют равные скорости. Такие системы относятся к типу обратимых реакций. Их изучение представляет большой интерес, поскольку можно кинетическое поведение подобных систем связать с термодинамическими свойствами (равновесием) конечной системы. [c.32]

    Последовательные реакции. Весьма часто исходные вещества образуют непосредственно не конечные продукты, а сначала промежуточные вещества, которые затем в свою очередь реагируют либо друг с другом, либо с исходными веществами, давая конечные продукты. Такие реакции называются последовательными реакциями. Подробных реакций различных типов очень много. В некотором смысле почти все реакции могут рассматриваться как сложные системы последовательных реакций. Химические процессы могут включать реакции, характерные для одной или всех этих типов, таким [c.32]

    По мере проведения процесса скорость реакции образования продуктов Р и Q уменьшается, а скорость обратной реакции (т. е. получения А и В) возрастает, что следует из направления изменения концентраций этих реагентов в системе. В состоянии равновесия химической системы скорости прямой и обратной реакции равны [c.211]

    Обычно в каждом единичном процессе приходится иметь дело с явлениями, проходящими по разному механизму. Перенос массы может осуществляться диффузией и конвекцией, теплообмен — теплопроводностью, конвекцией и излучением химическое превращение проходит обычно через промежуточные стадии, нередко также с различными механизмами, а стехиометрическое уравнение представляет собой баланс многих частных реакций и выражает суммарно конечный результат Того, что происходит в системе. В гетерогенных системах реакция осуществляется на границе раздела фаз, ей сопутствует перенос исходных веществ из реагирующих систем в зону реакции и продуктов с поверхности контакта в глубь фаз (диффузия и конвекция). Одновременно происходит теплообмен, при котором тепловая энергия подводится в систему или отводится от нее. Все эти явления могут быть последовательными и параллельными. [c.348]

    В Советском Союзе синтез-газ используется в основном для получения химических продуктов и в ограниченном масштабе — для получения топливных продуктов. Производство топливных продуктов осуществлено на одном из заводов Северо-Кавказского экономического района. Технико-экономические показатели выпускаемой этим заводом продукции неблагоприятны, в силу чего на будущий период строительство новых предприятий по выработке топливных продуктов не намечается. Не оправдал себя в условиях Советского Союза и синтез изобутилового масла. Сложное аппаратурное оформление процесса и серьезные затруднения, имеющие место при разделении продуктов реакции, обусловливают высокие эксплуатационные затраты, а следовательно, и высокую себестоимость товарных продуктов. Наиболее перспективным направлением использования синтез-газа является производство метанола. В СССР это направление используется во все возрастающем масштабе. [c.190]


    Производство химических продуктов из нефтяного сырья основано на большой доступности последнего и на том, что низшие углеводороды легко вступают в основные химические реакции, такие как окисление, галогенирование, нитрование, дегидрирование, присоединение, полимеризация, алкилирование и т. д. Низкомолекулярные парафины и олефины, содержащиеся в природных и нефтезаводских газах, а также простые ароматические углеводороды до настоящего времени представляли с этой точки зрения наибольший интерес, потому что только здесь индивидуальные соединения легко могут быть выделены и переработаны. Можно получить большое число соединений, и многие из них в настоящее время производятся промышленностью. [c.575]

    Первичными продуктами радиолиза полимеров, как и других конденсированных систем, являются сольватированные или захваченные электроны, ионы, свободные радикалы и возбуждаемые молекулы. В результате реакций первичных продуктов радиолиза в полимерах происходят очень разнообразные физические и физико-химические явления. Наиболее важными являются сшивание, деструкция, газовыделение, окисление. [c.196]

    Схема процесса при работе с разбавителями заключается в следующем. Воздух, идущий на окисление, смешивается с водяным паром и нагревается в подогревателе до 400—450°. Углеводородное сырье нагревается отдельно до 150° и перед входом в реакционное пространство смешивается с нагретым воздухом и водяным паром. Температура углеводородного сырья при этом повышается до температуры начала реакции окисления. На выходе из реактора реакционная смесь подвергается закалке орошением ее струей воды. Смесь при этом охлаждается до 180°. После дальнейшего охлаждения и конденсации химические продукты реакции поступают на разделение и очистку. [c.92]

    Нитропарафины сами по себе находят применение во многих отраслях промышленности. Кроме того, вследствие высокой реакционной способности они склонны к различным превращениям и реакциям конденсации и являются важным сырьем для получения ряда новых химических продуктов. [c.130]

    Контактный процесс на поверхности конденсированной фазы протекает в несколько стадий подвод вещества к внешней поверхности контакта, подвод вещества к внутренней поверхности контакта, сорбция исходных веществ на активной поверхности, собственно химическая реакция, десорбция продуктов реакции, внутренний [c.132]

    Для химика закон сохранения массы означает сохранение полного числа атомов каждого типа в химической реакции. В продуктах реакции должно содержаться точно столько же атомов каждого типа, сколько их имеется в реагентах. Химик подсчитывает молекулы, определяя массу вещества путем его взвещивания, а затем переводит массу вещества в граммах в соответствующее число молей. Моль любого вещества содержит всегда одно и то же количество частиц, N = 6,022 10 . Масса этого числа частиц, выраженная в граммах, численно совпадает с молекулярной массой вещества, выраженной в атомных единицах массы. Чтобы определить число молей вещества в его образце, следует разделить массу образца в граммах на молекулярную массу вещества в граммах на моль. [c.98]

    Особую опасность при работах в колодцах представляет сероводород, который может образоваться внезапно Лри реакции кислых стоков одних цехов с серосодержащими соединениями, сбрасываемыми из других цехов. На химических заводах все еще отмечаются случаи образования сероводорода и других опасных химических продуктов в. канализационных колодцах и при обезвреживании сточных вод. Подобные газообразования нередко создают аварийные [c.63]

    Применение стационарных катализаторов позволяет снизить температуру процесса и уменьшить расход водорода. Однако при этом снижается выход химических продуктов, так как именно в жидкофазном процессе в присутствии малоактивных плавающих катализаторов реакции восстановления кислород- и азотсодержащих функциональных групп протекают с умеренной скоростью, сравнимой со скоростью расщепления сырья с образованием ценных легких продуктов. Очевидно, что выбор между более или менее активными катализаторами должен решаться в каждом отдельном случае в зависимости от целей процесса и характера сырья. Применительно к технологическим целям, изложенным выше, подбор катализаторов [c.46]

    Более сложен механизм гетерогенного катализа. В этом случае существенную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий. Начальными стадиями являются диффузия частиц исходных реагентов к катализатору и поглощение частиц его поверхностью (активированная адсорбция). Последний процесс вызывает сближение молекул и повышение их химической активности, прн этом под влиянием силового поля поверхностных атомов катализатора изменяется структура электронных оболочек молекул н, как следствие, понижается активационный барьер. В результате на катализаторе происходит реакция. Затем продукты взаимодействия покидают катализатор и, наконец, в результате диффузии переходят в объем. Таким образом, в гетерогенном катализе образуются промежуточные поверхностные соединения. [c.225]

    В данной работе сформулированы основные принципы моделирования циклических режимов в сложных реакторных системах. Целесообразность их применения демонстрируется на примере гетерогенного реактора низкотемпературного синтеза метанола. Модель базируется на серии допущений, которые определяют гидродинамическую обстановку в аппарате, постадийный механизм экзотермической реакции образования целевого продукта, адиабатичносгь условий проведения процесса, незначительность изменения активности катализатора, нулевой порядок реакции химического превращения, сложный состав объема катализатора. [c.64]

    Рассмотренные подходы методологически во многих аспектах схожи и в рамках известных химических реакций достаточно легко реализуются. Если же говорить о синтезе новых химических продуктов, то выбор стратегии поиска, отсев неэффективных или абсурдных решений должен проводиться на основе фундаментальных закономерностей химических процессов, на основе результатов оптимизации по некоторому критерию. Размерность задачи синтеза слишком большая. Поэтому нужны рабочие эв- [c.451]

    Основные показатели эффективности функционирования элементов ХТС выражают в виде коэффициентов полезного действия (к. п. д.) элементов или величин, характеризующих фактический выход химического продукта из элемента ХТС, которые для технологических процессов собственно химического превращения представляют собой степени превращения химических компонентов, а для технологических процессов межфаз-ной массопередачи — степени межфазного перехода (степени разделения) или коэффициенты извлечения. К. п. д. элементов показывают степень приближения технологического процесса к равновесию. Расчеты к. п. д. требуют знания равновесных соотношений, хотя эти величины определяются в основном кинетикой процесса фактическое число компонентов, вступивших в химическую реакцию, или количество поглощаемого компонента зависит соответственно от скорости химического превращения или от скорости массопередачи. [c.15]

    ВНИИ НП разработан и внедрен более совершенный процесс производства сульфонатной присадки ПМС [93, с. 78 60, с. 35]. Применение глубокоочищенного сырья и разбавление его углеводородным растворителем обеспечивает проведение сульфирования в мягких условиях и значительно сокращает образование гудрона совмещение стадий получения сульфоната кальция и его карбонатации позволяет снизить продолжительность реакций в несколько раз непрерывная нейтрализация кислого масла раствором аммиака с последующей обменной реакцией полученного продукта с гидроксидом кальция дает возмох<ность повысить производительность стадии нейтрализации, автоматизировать ее, стабилизировать качество нейтрального сульфоната аммония химически очищенной водой, облегчить отделение механических примесей от присадки. [c.225]

    При рассмотрении современных каталитических производств экономические секреты фирм не раскрываются. Следует также иметь в виду, что для синтеза большинства химических продуктов существует несколько конкурентоспособных процессов. Основной упор делается на промышленную практику, а не на теорию, кинетику и механизмы реакций, так как по этим важным аспектам катализа уже имеются превосходные обзоры. [c.5]

    Катализаторы играют важную роль в химической науке, и каталитические реакции дают основную часть химических продуктов, производимых во всем мире из нефти, природного газа и угля. От катализаторов зависит промышленное производство многих пластмасс, лекарств, продуктов питания. Биосинтез, значение которого постоянно возрастает, основан на чрезвычайно специфических и эффективных природных катализаторах-ферментах. [c.35]

    Поведение низших и высших первичных хлористых алкилов в реакциях двойного обмена, казалось, должно было полностью оправдать эти надежды. Как известно, первичные хлористые алкилы можно легко получить из соответствующих первичных спиртов обработкой хлористым водородом в присутствии хлористого цинка или действием хлористого тионила, после чего пх можно ввести во взаимодействие с аммиаком, циаиидами, сульфидами, сульфгидридами и сульфитами щелочных металлов. Однако этот способ не представляет большой технической ценности, поскольку для указанных реакций уже требуется присутствие в углеводороде функциональной группы, в данном случае гидроксильной. Если при этом еще вспомнить, что такие высшие спирты, как миристиновый, цетиловый и октадециловый, получают относительно сложным методом из естественных продуктов (кокосовое масло, пальмовое масло и др.), то промышленный интерес к получению химических продуктов из спиртов через хлористые алкилы значительно ослабевает. [c.531]

    В зависимости от взаимной растворимости реагентов и продуктов реакции химические п физические реакции в твердых телах (или между твердыми телами) могут сопровождаться фазовыми переходами. Для большинства реакций твердых тел процесс диффузии является достаточно медленным и он становится лимитирующим. Процесс же образования центров зарождения не является в этих случаях существенным, как было показано на примере реакции СоО -Ь ZnO, ведущей к образованию смешанных окислов [91], и реакции KG1 + sBr [92]. О диффузии твердых галогеиидов щелочных металлов см. [93]. [c.560]

    Следовательно, по мере того как в ходе реакции концентрация исходных веществ А и В начинает убывать, скорость прямой реакции (гз Л + 1З2В —уменьшается. Эта скорость обладает наибол1,шим значением в самом начале реакции (когда концентрация А и В максимальная) и доходит до нуля в конце ее (когда вещества А и В исчезнут, т. е, нацело прореагируют) . Но в результате этой прямой реакции образуются продукты С и Л, скорость реакции которых с течением времени, наоборот, будет увеличиваться, начиная от нуля она в конце концов достигнет величины, равной скорости прямой реакции. При этом в каждую секунду будет образовываться столько продуктов С и О, сколько их будет и исчезать, т. е. снова превращаться в исходные вещества А и В. В этот момент наступает так называемое химическое равновесие. Последнее не означает, что реакция прекратилась. Оно показывает, что скорости прямой и обратной реакций в этот момент равны, и после этого момента концентрация исходных веществ и продуктов реакции остается постоянной. [c.173]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Применение того или иного бензина, осветительного керосина, дизельного, газотурбинного или котельного топлива обычно зави-0 от скорости и полноты окисления газообразных во время реакции сгорания. В производстве химических продуктов промышленное значение имеет прямое частичное окисление углеводородов при невысоких температурах. В то же время, для некоторых случаев использования нефтепродуктов окислительные реакции нежелательны, и прилагаются большие усилия, чтобы не допустить процессов окисления. Так например, более или менее длительные сроки эксплуатации нефтяных масел как смазочных, так и изоляционных, зависят от их антиокислительной стабильности в условиях работы при повышенных температурах. Образование шлама при эксплуатации турбинного масла в большой степени зависит от окисления углеводородов, входящих в состав данного шлама. По той же причине при хранении крекинг-бензинов увеличивается их смолосодержание, и при продолжительном использовании таких бензинов в автомобильных двигателях отлагается углеродистый осадок. [c.68]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Газообразные продукты реакции, включающие ценные кислородсодержащие соединения, непрореагпровавшие углеводороды, окпслы углерода и азот, поступают в водяной абсорбер для выделения конденсирующихся продуктов реакции. Разбавленный водный раствор продуктов реакции направляется далее в колонну для выделения ценных компонентов. Остаток из колонны, состоящий в основном из воды, нейтрализуется и снова направляется в водяной абсорбер для извлечения химических продуктов из реакционных газов. [c.90]

    Итак автоколебания в гетерогенно-каталитической системе могут возникнуть, если система открыта, система нелинейна и в системе существует обратная связь. В открытой гетерогенно-каталитической системе выделяются следующие стадии транспорта и химического превращения реагирующих веществ подача в реактор массо- и теплоперенос к активной поверхности катализатора адсорбция исходных веществ на активных центрах катализатора реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя десорбция продуктов реакции массоперенос продуктов реакции от активной поверхности катализатора вывод из реактора продуктов реакции. [c.316]

    Процесс, в результате которого молекулы одних типов (исходные вещества) превращаются в молекулы ин010 строения (продукты реакции). Химические реакции могут быть элементарными или состоять из нескольких элементарных процессов. [c.84]

    Особенность химических процессов заключается в образова-ини новых компонентов (продуктов реакции) и расходовании рапсе находившихся в системе (исходных реагентов). Поэтому для описания реакционных систем недостаточно ограничиться рассмотрением процесса переноса вещества или компонента, необходимо ввести представление о системах с источпиками и стоками, причиной которых является химическая реакция. Большинство малотоннажных химических продуктов получается в результате тонкого органического или неорганического синтеза. [c.18]

    Особенность совмещенных процессов состоит в том, что, помимо фазового равновесия, необходимо рассматривать и химическое равновесие. А это значит, что необходимо исследовать кинетику возможных химических реакций в условиях, создаваемых при ректификации. Следует заметить, что при медленных химических реакциях и при низких тепловых эффектах процесс практически не отличается от обычной ректификации. Имеющееся отличие будет сказываться лишь при большом времени пребывания реагентов и проявляться в накоплении продуктов побочных реакций в продуктах разделения. При наличии же больших тепловых эффектов и скоростей реакций могут быть совершенно неожиданные результаты. Так, при экзотермической реакции с большим тепловым эффектом возможно полное испарение потока жидкости в зоне реакции и, наоборот, при эндотермической — захолаживание жидкости и конденсация парового потока. Поэтому при попытке совмещения ректификации и реакции важнейшей задачей является обеспечение условий нормального функционирования процесса, т. е. его устойчивости и управляемости. Отсюда следует, что хеморектификация протекает в более жестких границах изменения основных технологических параметров. Выход за допустимые границы (например, по теплоотводу) может привести к взрыву в случае сильно экзотермической реакции и останову процесса массообмена между потоками пара и жидкости в случае эндотермической реакции. Интересным моментом является то, что возникает проблема рационального использования выделяемого тепла внутри схемы, например, на образование парового потока с целью снижения энергетических затрат на ведение процесса. [c.365]

    Реакторы периодического действия часто используют, еслп скорость производства мала или время реакции велико. Они могут быть прпспособлены для широкого диапазона условий реакции, поэтому их используют в тех случаях, когда на одной установке производят различные химические продукты (например, в фармацевтической промышленности). Периодическое производство обладает некоторыми преимуществами по сравнению с непрерывным, если с заметной скоростью протекают побочные процессы или существует опасность загрязнения сырья (например, прп биологической ферментации). Капитальные вложения на создание периодического реактора (включая вспомогательное оборудование) обычно относительно низки. [c.72]

    Адиабатическое сгорание и температура горения. При адиабатическом сгорании, т. е. не сопровождающемся тепловыми потерями, весь запас химической энергии горючей смеси расходуется на нагревание продуктов реакции, Температура продуктов адиабатического сгорания не зависит от скорости протекающих в пламени реакций, а зависит лишь от их суммарного теплового эффекта и теплоемкости конечных продуктов. Эта величи la называется температурой горения Та и является важной характеристикой горючей смеси. Величина Тв распространенных горючих смесей лежит в пределах 1500—3000 К. [c.131]

    Серная кислота является одним из важнейших химических продуктов. Дж. Донован, Р. Сток и М. Юнлэнд (гл. 7) описали катализаторы окисления диоксида серы в триоксид, равновесие этой реакции и ее кинетику, а также регулируемые параметры промышленного процесса, [c.6]


Смотреть страницы где упоминается термин Реакции химические продуктов: [c.33]    [c.193]    [c.92]    [c.352]    [c.244]    [c.29]    [c.163]   
Основы полярографии (1965) -- [ c.373 , c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Продукты реакции



© 2025 chem21.info Реклама на сайте