Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные химические соединения

    Запись спектров ЯМР в критических условиях, касающихся динамического диапазона - часто встречающаяся проблема при изучении природных и высокомолекулярных химических соединений или при работе с очень малыми концентрациями. Эта проблема возникает тогда, когда очень слабые сигналы необходимо записать в присутствии очень сильных пиков растворителя, например, воды. Возможны многочисленные решения задачи увеличения динамического диапазона сигналов регистрируемого спектра, и все они основаны на принципе уменьшения интенсивности сигнала растворителя, без его возбуждения путем насыщения линий растворителя и регистрации нулевого значения линии после приложения инверсированного импульса. Совсем недавно был предложен метод, в основе которого лежит дифференцирование сигнала, за счет чего уменьшается вклад растворителя в аналоговый сигнал на стадии его преобразования в цифровую форму. [c.10]


    Процесс растворения твердых высокомолекулярных химических соединений с переходом их в высоковязкие прядильные растворы состоит во взаимодействии молекул жидкого растворителя с активными группами растворяемого вещества и протекает последовательно по трем стадиям набухание полимера в результате диффузии молекул растворителя переход набухшего полимера в раствор гомогенизация образовавшегося раствора, т. е. выравнивание его концентрации. [c.40]

    Как известно, полимеры — это высокомолекулярные химические соединения. Если обычные низкомолекулярные вещества имеют молекулярный вес от нескольких единиц до немногих сотен, то полимеры обладают молекулярным весом в несколько десятков и сотен тысяч и даже миллионов. Например, молекулярный вес целлюлозы — природно-г о полимера — составляет от 400—500 тысяч (для целлюлозы древесины) до 5 миллионов 900 тысяч (для целлюлозы льна). Молекулярный вес искусственных полимеров, получающихся в результате химической переработки природных высокомолекулярных соединений, всегда значительно ниже последних. Это связано с деструкцией материала, которая появляется при химической переработке, иногда специально осуществляемой для того, чтобы уменьшить вязкость растворов, т. е. увеличить их подвижность, исходя из технологических удобств переработки этих раст- [c.11]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ ХИМИЧЕСКИЕ СОЕДИНЕНИЯ [c.388]

    Кремнийорганическими полимерами называются высокомолекулярные химические соединения, молекулы которых наряду с другими элементами обязательно содержат углерод и кремний. [c.309]

    Процесс растворения твердых высокомолекулярных химических соединений с переходом их в высоковязкие прядильные растворы происходит путем взаимодействия молекул жидкого растворителя с активными группами растворяемого вещества и протекает последователь но по трем стадиям  [c.41]

    Понятие высокомолекулярные соединения очень широкое, оно относится ко всем веществам с огромными молекулами (макромолекулами). Понятие полимеры более узкое. Полимерами называют высокомолекулярные химические соединения, которые образуются в результате последовательного присоединения друг к другу тысяч и десятков тысяч простых молекул мономера Способность молекул мономеров соединяться обусловливается наличием двойных или тройных связей или активных функциональных групп. Мономеры — это в основном вещества небольшого молекулярного веса. [c.7]


    Другими словами, для различных, не высокомолекулярных, химических соединений (элементов) вероятность возникновения излучения под влиянием поглощенной ими химической энергии велика. Закономерностью общего характера является то, что высокомолекулярные соединения как целое не флуоресцируют. [c.12]

    Нефть — это не что иное, как смесь тысяч различных химических соединений, основная масса которых представлена углеводорода.мп — молекула.ми, содержащими атомы углерода и водорода. Кро.ме того, имеется немалое количество соединений, содержащих, помимо углерода и водорода, серу, кислород и азот. Среди этих соединений имеется немало высокомолекулярных (поли- [c.6]

    Асфальтены являются высокомолекулярными гетероциклическими соединениями с высокой реакционной способностью, состоят из сильно конденсированных структур, богаты непредельными и представляют собой типичные коллоиды. Кроме того, в асфальтенах содержится наибольшая часть таких химически высокоактивных гетероатомов, как кислород, сера, железо, а также ванадий, никель, азот и титан в активной форме в виде порфириновых соединений. Строение кокса из асфальтенов отображает структуру исходных асфальтенов, так как распределение электрических (возможно, и спиновых) плотностей у исходного сырья оставляет свои следы [15] в виде структурных особенностей в карбоидных (полимерных) образованиях, несмотря на сложность последующих деструктивных превращений при коксовании. [c.27]

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Успешно применяемый в настоящее время при исследовании керосино-газойлевых, масляных и отчасти смолисто-асфальтеновых компонентов нефти метод структурно-группового анализа [251 является примером использования принципа физико-химического анализа для исследования весьма сложных многокомпонентных систем высокомолекулярных органических соединений. [c.21]

    Кислородные соединения нефтей и нефтяных фракций состоят из карбоновых кислот, фенолов, спиртов, соединений с карбонильной группой и гидроперекисей. Значительная часть кислородных соединений представляет собой высокомолекулярные продукты полимеризации, конденсации, окислительного уплотнения и других химических взаимодействий перечисленных выше соединений. Одновременно с высокомолекулярными кислородными соединениями в нефтях и нефтяных фракциях всегда находятся высокомолекулярные сернистые, азотистые соединения, продукты их окисления, т. е. соединения с двумя и более гетероатомами в молекуле (О, 3, К). [c.257]


    Книга Химия синтетических полимеров является учебным руководством к курсу Химия высокомолекулярных (полимерных) соединений для студентов, специализирующихся в области технологии пластических масс, синтетических каучуков, эластомеров, пленкообразующих веществ, искусственной кожи, химических волокон. [c.7]

    К высокомолекулярным соединениям (ВМС) относят природные и синтетические вещества с относительной молярной массой не менее 10—15 тысяч. Молярная масса природных ВМС может достигать 500—700 тысяч, а в отдельных случаях нескольких миллионов. Подавляющее большинство высокомолекулярных органических соединений имеют линейное или цепочечное строение. Их макромолекулы представляют собой длинные цепи, в которых атомы связаны в форме нитей (или цепей). Длина таких макромолекул превышает их поперечный размер на несколько порядков. Если цепи имеют боковые ответвления, говорят о разветвленных или двумерных цепях. Цепи макромолекул в полимерах могут быть соединены химическими связями (например, мостики серы в вулканизированном каучуке) в пространственные сшитые структуры. [c.435]

    В настоящее время разработаны методы синтеза разнообразных высокомолекулярных кремнийорганических соединений, многие из которых очень ценны по своим свойствам. Так, подобные соединения оказались химически очень устойчивыми, нерастворимыми в воде, высококачественными диэлектриками и т. д. [c.447]

    Пластические материалы. Высокомолекулярные кремнийорганические соединения служат сырьем для изготовления многих пластических материалов, которые обладают высокими качествами эластичностью, термостойкостью, прочностью, химической инертностью. Высокие диэлектрические характеристики таких материалов позволяют их эффективно использовать в качестве изоляции [c.447]

    Аминокислоты, их строение, свойства и значение. Белки как высокомолекулярные природные соединения. Строение белков и их свойства. Проблема химического синтеза белков. [c.224]

    Полимеры — высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называемые также макромолекулами, состоят из большого числа повторяющихся звеньев. Вследствие большой молекулярной массы макромолекул полимеры приобретают некоторые специфические свойства. По этому они выделены в особую группу химических соединений [c.351]

    Ионообменные сорбенты органического происхождения представляют собой либо продукты химической переработки угля, лигнина или целлюлозы, либо синтетическим путем полученные высокомолекулярные органические соединения, содержащие ионообменные группы. Последние широко применяются в ионообменной хроматографии. [c.52]

    Органические ионообменные сорбенты представляют собой синтетически полученные высокомолекулярные органические соединения, содержащие ионообменные группы, либо продукты химической переработки лигнина или целлюлозы. В практике хроматографического анализа особенно широко применяются ионообменные смолы, химические и физические свойства которых можно модифицировать в процессе их синтеза. [c.155]

    Как известно из огромного опыта, накопленного химией, с увеличением молекулярной массы химических соединений подвижность их молекул уменьшается. Полезно подчеркнуть, что устойчивость высокомолекулярных соединений, особенно органических, является следствием не низкого термодинамического потенциала (т. е. малого запаса свободной энергии), а малой подвижности громоздких макромолекул и малой скорости диффузионных процессов. Всякие же физико-химические изменения тел — плавление, растворение, кристаллизация, испарение, деформация — неизбежно связаны с перемещением молекул. Для химических превращений, которые невозможны без непосредственного контакта между молекулами реагирующих веществ, тем более требуются перемещения, диффузионное проникновение одного компонента в массу другого и пр. Естественно, что небольшие молекулы низкомолекулярных соединении, будучи значительно подвижнее макромолекул, гораздо легче подвергаются химическим и физико-химическим превращениям. В температурных условиях земного шара только высокомолекулярные тела достаточно стойки к химическим и физико-химическим превращениям. Долговечность объектов живой и мертвой природы была бы ничтожной, если бы они состояли из низкомолекулярных соединений. [c.16]

    Не следует, конечно, думать, что последовательные превращения состоят обязательно из строго чередующихся процессов, например образование данного конкретного низкомолекулярного соединения, превращение его в какое-то определенное высокомолекулярное соединение, распад этого высокомолекулярного соединения на какие-то новые, но также конкретные низкомолекулярные соединения и т. д. На самом деле каждое из таких превращений состоит, в свою очередь, из ряда последовательных превращений одного низкомолекулярного соединения в другое, также низкомолекулярное, другого в третье и т. д., пока наконец не произойдет превращения низкомолекулярного соединения в высокомолекулярное. Обратный процесс также состоит из ряда последовательных видоизменений образовавшегося высокомолекулярного вещества вплоть до его распада — превращения в низкомолекулярное соединение. Все эти превращения приводят к изменению свойств химических соединений, т. е. сопровождаются энергетическими изменениями и перемещением масс веществ, составляя в целом общий процесс развития природы. [c.17]

    С изменением физических свойств по мере увеличения молекулярной массы непосредственно связана еще одна особенность высокомолекулярных соединений. С увеличением молекулярной массы давление паров химических соединений уменьшается и задолго до достижения значений молекулярных масс, характерных для высокомолекулярных соединений, падает практически до нуля. При нагревании высокомолекулярных соединений не наблюдается заметной летучести, а при определенной температуре наступает термическое разложение вещества с разрывом химических связей и перегруппировкой атомов. Высокомолекулярные соединения практически нелетучи и не могут быть переведены в газообразное состояние. [c.43]

    При исследовании природных и высокомолекулярных химических соединений проблема записи ЯМР спектров в условиях, критических по динамическому диапазону, возникает из-за низкой концентрации этих соединений в исследуемом растворе. Большой динамический диапазон в спектрах ЯМР таких растворов создает инструментальные проблемы, связанные с длительным накоплением данных, что особенно характерно для протонных спектров. Самый распространенный способ решения этих проблем - методики подавления интенсивных пиков растворителя, основной недостаток которых заключается в том, что они чувствительны ко всем небольшим инструментальным дефектам. Поэтому необходима кропотливая оптимизация с помоцц.ю варьирования экспериментальных параметров, таких как точная настройка длительности импульсов, сдвига фазы, РЧ амплитуды и частоты передатчика, для нейтрализации этих дефектов и достижения приемлемого уровня подавления. Такие последовательности могут требовать полной релаксации сигнала растворителя. В этом случае длительность подготовительного периода должна составлять порядка 10 с между выборками данных. [c.10]

    Многие показатели качества продукции находятся в функциональной или корреляционной зависимости от ее параметров. Так, например, коэффициент лобового сопротивления летательного аппарата — показатель его качества — является функцией мидлевого сечения — геометрического параметра. Показатели качества высокомолекулярных химических соединений корреля- [c.29]

    Различные соотношения входяпщх в технический парафин и в церезин углеводородов разных групп обусловливают разницу химических свойств этих продуктов. Поскольку технические парафины состоят в основном из и-алканов и из углеводородов, близких к ним по структуре, их химические свойства приближаются к химическим свойствам к-алканов технические парафины являются химически малоактивными веществами, слабо реагируют со многими реагентами, энергично действующими на церезин, и способны образовывать в значительной доле своей ыассы комплексы с карбамидом. Церезины же вследствие присутствия в них ароматических углеводородов, углеводородов сильно разветвленных структур и высокомолекулярных конденсированных соединений обладают повышенной реакционной способностью, в частности, энергично реагируют с хлорсульфоновой кислотой, олеумом и др. С карбамидом лишь относительно небольшая часть массы церезина способна образовывать комплексы. --— [c.79]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    Добавление коагулянтов с целью очистки различных жидкостей известно давно и широко используется в промышленности. Однако применительно к очистке реактивных топлив такие присадки пока только изучаются. В. Н. Зреловым [4—6] исследованы с этой целью представители нескольких классов химических соединений, в том числе эфиры многоатомных спиртов и высокомолекулярных кислот, сополимеры эфиров метакриловой кислоты, фенолы, сульфенамидные производные 2-бензтиа-зола и др. [c.250]

    Путь создания искусственных моделей не всей молекулы асфальтенов, а ее основных структурных звеньев позволяет более надежно и полно воспроизвести в синтетической модели состав, свойства и строение реальных объектов исследования. Учитывая, что первой стадией высокотемпературных превращений асфальтенов должен быть процесс распада их на основные фрагменты, особенно по связям атомов углерода с гетероатомами, фрагменталь-ное моделирование позволит вплотную подойти к выяснению химизма реакций превращения асфальтенов. Иными словами, открывается наиболее короткий и прямой путь для изучения научных основ химической переработки и использования смолисто-асфальтеновой части нефтей, так как именно эта часть нефти (высокомолекулярные неуглеводородные соединения) используется наименее эффективно, и поэтому именно она является основным источником дальнейшего повышения степени использования нефти. [c.107]

    Так же как среди нефтяных кислот преобладают соединения, молекулы которых содержат пятичленное карбоциклическое кольцо, среди высокомолекулярных сераорганических соединений нефти главную роль играют, по-видимому, ди- и полициклические системы, содержаище в конденсированном ядре пятичленное гетероциклическое кольцо (тиофеновое или тиофановое) и, по крайней мере, одно ародгатическое (бензольное, или нафталиновое) ядро. Большой экспериментальный материал, накопленный в нашей лаборатории и в лабораториях других [исследователей в результате изучения химической природы высокомолекулярной части нефтей, не подвергавшихся воздействию высоких температур, свидетельствует о том, что максимальное количество серы всегда содержится в тех фракциях углеводородов, в которых сконцентрированы ароматические соединения, имеющие в молекуле конденсированные циклические структуры. В ароматических же соединениях относящихся к гомологам бензола, 1. е. содержащих изолированные бензольные кольца, серы значительно меньше (в 2—3 раза), чем в ароматических соединениях с конденсированными циклическими структурами. Все эти данные свидетельствуют о том, что главная часть серы высокомолекулярных соединений нефти является циклической, -входящей в состав таких циклических конденсированных структур, как бензтиофеп (I), дибензтиофен (II) и, возможно, нафтотиофен (III)  [c.344]

    Для характеристики химической природы высокомолекулярных сераорганических соединений ромашкинской нефти был применен метод каталитического гидрирования над вольфрам-никельсульфид-ным катализаторо.м при температурах 250—300° С [143, 144]. Изучение продуктов гидрирования показало, что процесс идет гладко и не осложнен явлениями крекинга, о чем свидетельствует отсутствие в гидрогенизатах заметных количеств углеводородов с молекулярным весом ниже, чем в исходной фракции. Анализ продуктов показывает, что сера входит в состав гетероциклических соединений преимуш е-ственно конденспрованного бициклоароматического характера. [c.390]

    Омылением сульфохлоридов щелочью получают растворимые в воде соли сульфокислот. Соли алкилсульфокислот с алкановой цепью С12—С20 обладают высокими поверхностно-активными и моющими свойствами. С аммиаком образуются сульфамиды — исходные соединения для получения т 1ногих ценных химических соединений. Сульфохлориды высокомолекулярных алканов нормального строения используют для получения ПАВ, а также для производства вспомогательных материалов в текстильной, кожевенной и пластмассовой промышленности. В зависимости от длины цепи сами сульфохлориды применяют в качестве инсектицидов, дубителей кожи и смазочных масел для высоких удельных давлений. Соли высокомолекулярных сульфоновых кислот под торговым названием мерзоляты известны как моющие средства различного назначения [12]. [c.325]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дереза электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических сссд. 1п.е-ний — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других сфга-нических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]

    Спирты гидрофильны, они хорошо диспергируют в воде с образованием стабильных эмульсий. Многие из них используются для получения парфюмерно-косметической продукции , В последнее время их начали применять при производстве моющих веществ, эмульгирующих преператов, пластифицирующих добавок. Однако, повидимому, основное направление использования высокомолекулярных спиртов, особенно ненасыщенных — синтез на их основе новых химических соединений. [c.264]

    Смолы и асфальтены относятся к высокомолекулярным неуглеводородным соединениям нефти [135,136]. В составе нефти они играют важную роль, определяя во многом ее физические свойства и химическую активность. В состав смол и асфальтенов входят полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомными структурами, содержащими серу, кислород, азот. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, не растворимые в низкомолекулярпых растворителях. Молекулярные массы смол 500-1200, асфальтенов - 1200-1300 [143]. Содержание ароматических углеводородов в нефти изменяется от 5 до 55 %, чаще всего 20-40%. Основную массу ароматических структур составляют моноядерные углеводороды - гомологи бензола. Полициклические ароматические углеводороды (ПАУ), т.е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 % [91]. [c.24]

    Значительные успехи, достигнутые исследователями в изучении химической природы и свойств тяжелых составных частей нефтн за сравнительно коротко(з время, объясняются в значительной степени тем, что в химии нефти и в химии высокомолекулярных органических соединений был создан к этому времени огромный арсенал совершенных методов исследования, который был с успехом использован для решения новых задач в химии пефти — изучение состава, свойств и строепня высокомолекулярных соединений нефти. [c.406]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ — химические соединения, молекулярная масса которых может быть равна от нескольких тысяч до нескольких миллионов. Атомы В. с. соединены друг с другом валентными связями. Атомы нли атомные группировки в молекулах В. с. располагаются в виде длинной цепи (линейные В. с., напр,, целлюлоза), либо в виде разветвленной цени (разветвленные В, с,, напр., амнлопектин), либо в виде трехмерной сетки, состоящей из отрезков цепного строения (сшитые В. с., напр., феполформальдегидные смолы). В. с., состоящие из большого числа повторяющихся групп одинакового строения, называют полимерами. В. с., молекулы которых содержат несколько типов повторяющихся групп, называют сополимерами. В зависимости от химического состава, В. с. делятся на гете-роцепиые (в основной цепи содержатся атомы различных элементов) и гомоцеп-ные (в цепи — одинаковые атомы). В. с. применяются во всех отраслях народного хозяйства. На основе В. с. изготовляют резины, волокна, пластмассы, пленки, покрытия, различные изделия, посуду, мебель, клен, лаки и др. Все ткани живых организмов состоят из В. с. [c.61]

    Для понижения адсорбционной способности металлических порошков по отношению к влаге А. И. Левин и А. В. Помосов исследовали возможность создания на поверхности частиц металла тончайших адсорбционных слоев (пленок), образованных высокомолекулярными органическими соединениями жирного и ароматического рядов. П )и этом было установлено, что полярный конец гетерополярной молекулы образует типичную химическую связь с атомами металла, что приводит к необратимости таких процессов, в то время как углеводородный радикал высокомолекулярных соединений придает явно выраженные гидрофобные свойства наружной поверхности пленки, образующейся на частицах металла. Чем длиннее углеводородная цепь стабилизатора, тем более гидрофобной должна быть адсорбционная пленка на поверхности частиц. [c.349]

    Наибольшее распространение получили органические иониты — синтетические ионообменные смолы, представляющие собой разнообразные высокомолекулярные полимерные соединения, способные к ионизации поэтому их называют полиэлектролитами. Их синтезируют конденсацией и сополимеризацией мономеров, содержащих необходимые ионогенные группы или вводят эти функциональные группы в сополимеры. Полимерные цепи химически связываются между собой ( сш.иваютсяу>) в каркас, т. е. в пространственную трехмерную сетку, называемую матрицей, с помощью взаимодействующего с ними вещества (кросс-агента). Обычно это дивинильное соединение, например дивинилбензол, которое выполняет роль сшивки . [c.302]


Смотреть страницы где упоминается термин Высокомолекулярные химические соединения: [c.224]    [c.199]    [c.8]    [c.6]    [c.8]    [c.173]    [c.405]    [c.191]   
Смотреть главы в:

Физическая и коллоидная химия Издание 3 1963 -> Высокомолекулярные химические соединения




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Химическое соединение



© 2024 chem21.info Реклама на сайте