Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды азота сравнение

    В четвертом издании книги по сравнению с предыдущим (3-е издание вышло в 1966 г.) значительно переработаны и дополнены разделы, посвященные методам определения ХПК и растворенного кислорода. Новые лучшие методы даны для определения нитратов, сульфатов, сероводорода, цианидов, цинка, мышьяка, марганца, серебра, фторидов. Приведены методы определения различных форм активного хлора (монохлорамина, дихлорамина, треххлористого азота и свободного хлора) при совместном присутствии. Наиболее переработаны разделы, посвященные определению органических компонентов сточных вод. Даны новые методы выделения всех органических веществ и последующего разделения их на группы. [c.2]


    Активность молекул фтора по сравнению с хлором гораздо выше/ чем можно было бы ожидать. Объясняют это сравнительно небольшой энергией диссоциации молекул фтора (158,34 кДж/моль), а также отсутствием у атома фтора -орбиталей и, следовательно, дополнительных связей между атомами в молекуле. Действительно, с большинством элементов фтор взаимодействует при обычных температурах, но не соединяется непосредственно с кислородом и азотом. Во фториде кислорода 0р2 кислород проявляет степень окисления 4-2, так как атомы фтора оттягивают к себе электроны. [c.392]

    Поведение вещества определяется наличием в молекуле атомов фтора и водорода, обладающих резко различной электроотрицательностью. Молекуле дифторамина свойственны окислительные функции, присущие связи N—F, и в то же время она проявляет восстановительные свойства за счет связи N—Н. Под воздействием атома водорода увеличивается электронная плотность на атоме азота по сравнению с другими неорганическими фторидами, в результате дифторамин становится слабым основанием. Воздействие электроотрицательных атомов фтора поляризует связь N—Н, что обусловливает кислотные свойства дифторамина. [c.125]

    Особые полосы поглощения в инфракрасной области спектра, относящиеся к водородной связи, наблюдаются у газообразного фтористого водорода и у аниона HF кислых фторидов . Исследование инфракрасных спектров поглощения спиртов и карбоновых кислот [126] в растворах однозначно подтверждает существование водородных мостиков. Например, для УКСУСНОЙ кислоты частота ОН 3530 сл (Я=2,83 <), характерная для мономера, смещается для димерной кислоты к 3080 см (А=3,25 С другой стороны, у анилина и у других аминов не установлено заметного смешения основной полосы поглощения, так что здесь межмолекулярный водородный мостик если и существует, то он очень слаб. Пример с анилином интересен потому, что по сравнению с алифатическими аминами анилин обладает высокой точкой кипения, которая равна точке кипения фенола причиной этого могла бы считаться водородная связь. Изучение инфракрасного спектра поглощения, однако, указывает, что причина высокой точки кипения анилина должна заключаться в чем-то другом . Хотя амины не склонны к ассоциации сами с собой с образованием водородной связи, но связанный с азотом водород все же способен к образованию связи с другими подходящими молекулами, а их азот может становиться посредником в образовании свя. и с активным водородом других соединений .  [c.246]


    На основе перечисленных выше фторидов азота были синтезированы также неорганические фторазотные производные других элементов — серы, сурьмы, фосфора. Хотя химия неорганических фторазотных производных элементов развита еще недостаточно по сравнению с органической химией фторидов азота, нет сомнения, что со временем фторазотные производные ряда элементов, и прежде всего элементов HI — VI групп, будут получены. [c.9]

    Кинетика и механизм реакции Кольбарна и Кеннеди, несмотря на большое ее значение в химии фторидов азота, не изучены. Очевидно, что селективное отщепление только одного атома фтора от трифторида азота определяется структурой молекулы трифторида азота, для которой энергия диссоциации первого атома фтора меньше (56 ккал/моль) энергии диссоциации двух других атомов (см. гл. 2). Этим объясняется преимущественное направление конерсии в сторону тетрафторгидразина. Однако отрыв двух атомов фтора с образованием дифтордиазинов и трех атомов — с образованием азота также имеет место. Поэтому в продуктах реакции всегда содержится азот. Термически менее стабильные дифтордиазины, обладающие к тому же большей химической активностью по сравнению с тетрафторгидразином и трифторидом азота, разлагаются до азота. При более низких срёднегазовых температурах, например в условиях конверсии в электрическом разряде, дифтордиазины составляют основные продукты реакции наряду с тетрафторгидразином. [c.178]

    Высшее соединение азота с фтором имеет формулу NF3, тогда как фосфор и мыщьяк легко образуют такие фториды, как PF5 и AsFj. Объясните причину этого различия в свойствах азота по сравнению с фосфором и мышьяком. [c.332]

    Трифторид азота и дифторид кислорода могут оказаться в ближайшем будуш ем очень важными лабораторными реагентами. Оба фторида будут, по-видимому, дешевыми. Реакции этих двух газообразных фторидов в отличие от других фторидов этой группы часто обладают относительно высокими энергиями активации. Например, при умеренных температурах гидролиз этих двух фторидов протекает медленно, несмотря на то, что эта реакция термодинамически очень вероятна. Высокие энергии активации этих реакций сильно упрощ ают их проведение по сравнению с реакциями, проводимыми с фтором и фторидами галогенов. Следует отметить, что смесь любого из этих фторидов с органическими веществами или с неорганическими восстановителями обладает высокой потенциальной энергией реакции. Так, несмотря на высокие энергии активации многих реакций с ОРг или МРз, указанные смеси следует рассматривать как взрывоопасные. Дифторид кислорода является потенциальным источником радикалов Р- и ОР таким образом, он может оказаться полезным реагентом для получения новых соединений, содержащих группу ОР. Например, при облучении смеси ОРа и 80з с хорошим выходом образуется РЗОаООР [27]. Однако большое число других попыток доказать, что ОРа может служить источником ОР, оказались безуспешными. [c.313]

    Выше упоминалось о применении алюминиевого электрода для определения фтора Впервые алюминиевый электрод для этих целей был предложен несколько ранееа затем Кольтгоф и Самбучетти подробно изучили особенности работы этого электрода и установили, что при потенциале —0,75 в относительно Нас. КЭ или при работе без наложения внешнего напряжения, но с электродом сравнения, имеющим потенциал такого же порядка (амальгама кадмия, Е = —0,77 в) ток окисления алюминия в присутствии фторида пропорционален концентрации последнего. Это явление было использовано для амперометрического титрования 2 в растворе, содержащем фторид-ион в концентрации порядка 10 — 10" М, сперва измеряют величину тока окисления на вращающемся алюминиевом электроде при —0,75 в (Нас. КЭ) или при указанном выше электроде сравнения раствор должен иметь pH около 4 (ацетатный буфер) и содержать примерно 50% спирта и некоторое количество нитрата калия или натрия (концентрация нитрата щелочного металла должна быть примерно 0,5 М) для того, чтобы образующееся соединение (Na2AlFa или K2AIF0) имело постоянный состав пропускают азот для удаления растворенного кислорода и затем титруют 0,01 М раствором нитрата алюминия, продувая раствор азотом после каждого добавления реактива. Кривая титрования имеет форму а. Точность определения, фторида составляет около 10%. Указанные выше условия следует соблюдать строго, иначе кривая получается размытой и конечная точка трудно определима, так как по ходу титрования могут образовываться комплексные фториды алюминия другого состава. Все факторы, обусловливающие успешное осуществление этого метода, очень подробно обсуждены в литературе . 21, [c.332]

    Как показали наши исследования совместно с Е. А. Терентьевой, своеобразие состава комплексов р. з. э. состоит в том, что они соединяются с молекулами комплексообразующего реагента только через атомы кислорода и азота (комплексы р. з. э. с карбоновыми кислотами, аминами и комплексо-нами). Такие типичные для ранее известных комплексов лиганды, как сера или хлор, в комплексах р. з. э. не встречаются. Это обусловлено уже упоминавшимся чисто электростатическим характером комплексов р. з. э., в которых отсутствуют связи гомеополярные, а имеют место лишь чисто координационные связи. Естественно поэтому, что р. з. э. образуют комплексы с кислородом — атомом малого радиуса, имеющим три взаимонасыщенные пары электронов. Отсюда вытекает и установленная упомянутыми авторами несколько меньшая (по сравнению с кислородом) прочность связи р. з. э. с атомами азота, обладающего двумя парами электронов. Отсутствие комплексов р. 3. э. с фторсодержащими соединениями, вероятно, объясняется очень малым произведением растворимости фторидов р. з. э. в водных растворах, в то время как в литературе описаны комплексы фторидов р. з. э. со фторидами щелочных металлов в расплавах. [c.275]


    Фторирование борфторидами металлов. По сравнению с другими фторирующими агентами трехфтористый кобальт СоРд имеет преимущества а) он более дешев и не менее активен, чем фторид серебра б) реакция фторирования СоРз менее экзотермична, чем реакция каталитического фторирования элементарным фтором, следовательно, органическое соединение в случае трехфтористого кобальта подвергается меньшему тепловому воздействию. При фторировании пары алкана, разбавленного азотом, пропускают над тонким слоем СоРд (применяемым в избытке от 20 до 200%). Технически реакция проводится ступенчато (в нескольких реакторах) с постепенным повышением температуры (150—165°С 275—300°С)  [c.116]

    Длины связей и энергий связей в ковалентных фторидах. Вследствие низкой энергии диссоциации фтора теплоты образования соединений фтора в их стандартных состояниях таковы, что большинство фторидов сильно экзотермично это прямо противоположно той ситуации, которая наблюдается для соединений азота, поскольку связь в N2 очень прочна. Далее, вследствие высокой электроотрицательности фтора в энергию связи значительный вклад вносит ионно-ковалентный резонанс. Кроме того, небольшие атомы, подобные F, могут образовывать более прочные связи вследствие большего перекрывания орбиталей и по этой причине гораздо более вероятно возникновение я-связей. Несомненно, образование фтором кратных связей является одним из возможных факторов, приводящих к укорочению многих связей — например, в BFg и SiF4—по сравнению со связями, образованными другими галогенами. [c.224]

    Кристаллы борной кислоты В(ОН)з состоят из слоев молекул, объединенных водородными связями. Водородная связь приводит к образованию в водном растворе ионов оксония Н + пНгО 7=г Н2 +10, , где п=1—5 (см. раздел 10.2). Водородные связи создают ажурную структуру льда, состоящую из тетраэдрических фрагментов (рис. 29, в). Поэтому лед имеет небольшую плотность по сравнению с водой. При плавлении водородные связи частично разрушаются, молекулы воды сближаются и плотность ее возрастает. Структуру обычного льда имеют кристаллы фторида аммония НН4р, в которых каждый атом азота образует связи N—Н Р длиной 271 пм. [c.103]

    При сравнении ХМК с алкильными группами и обычного сорбента (15 % эластомера Е-301 на цеолите 545) для разделения насыщенных, ненасыщенных и ароматических углеводородов, алкилсиланов, фторидов и хлоридов фосфонитрильной кислоты, кислород-, азот- и серусодержащих соединений выяснено, что во всех случаях разделение на ХМК лучше пики более симметричные, эффективность колонки выше [59]. ХМК перспективны для разделения трудноразделяемых смесей (спиртов, кислот, аминов и т.п.) при программировании температуры. Четные алканы Се—С14 разделены за 8 мин, К-трифторацетил-и-бутиловые эфиры 19 аминокислот — за 25 мин. Достигнуто хорошее разделение триазинов, пестицидов и триметилсилильных эфиров нуклеиновых оснований [60]. Десять эфиров кислот С1—С5 разделены за 6 мин [61]. Приведены примеры разделений на ХМК с алкильными группами тиофосфатных инсектицидов, ряда важных в биологии окси-кислот (начиная с лимонной), дизельного топлива, бутиловых эфиров производных нитрилтриуксусной кислоты [62], холестерина и /б-систостирола, полициклических ароматических соединений (от нафталина до коронена) [63]. Отмечено, что для сорбентов с привитыми фазами температуры удерживания (при программировании температуры) примерно на 30°С ниже для спиртов и на 10°С — для углеводородов [62, 63]. Пики фенолов и аминов получались симметричными при изменении объема пробы в 20 раз. [c.392]


Смотреть страницы где упоминается термин Фториды азота сравнение: [c.335]    [c.49]    [c.224]    [c.170]    [c.335]    [c.26]    [c.179]    [c.179]    [c.405]    [c.224]    [c.283]    [c.217]    [c.31]    [c.405]   
Фтор и его соединения Том 1 (1953) -- [ c.18 , c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Фторид азота



© 2024 chem21.info Реклама на сайте