Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово отделение от фосфатов

    Отделение фосфат-ионов с помощью хлорного олова. Метод основан на образовании не растворимого в разбавленной соляной кислоте адсорбционного соединения 5пз(Р04)4 с Sn (ОН) 4. [c.183]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]


    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Описанная обработка неприменима к минералам, состоящим в основном из фосфатов Для разложения таких минералов требуется однократное или многократное сплавление с карбонатом натрия, за исключением тех случаев, когда их исследуют на содержание одного лишь компонента (обычно тория). В водной вытяжке плава содержатся фосфор мышьяк, сурьма, олово и вольфрам, а также большая часть креМния, алюминия и урана. Остаток тщательно промывают разбавленным раствором карбоната натрия, а фильтрат выпаривают с азотной кислотой для переведения кремнекислоты в нерастворимое состояние (при этом частично выделяются также вольфрам и сурьма). После выпаривания и отделения кремнекислоты фильтрат насыщают сероводородом для удаления свинца, мышьяка и оставшейся в растворе части сурьмы. Удалив -сероводород и упарив раствор, осаждают фосфор молибденовой жидкостью (стр. 781) (которую предварительно проверяют на содержание алюминия и других осаждающихся аммиаком элементов) и заканчивают его определение, как указано в гл. Фосфор (стр. 784). Из фильтрата, выпаренного для удаления избытка азотной кислоты, выделяют алюминий двукратным осаждением аммиаком (стр. 565). Осадок промывают 2%-ным раствором нитрата аммония, прокаливают и взвешивают. [c.625]

    IV) обезвоживание кремнекислоты надо проводить серной кислотой, чтобы олово осталось в растворе (в виде комплексного сульфата). Ниобий и тантал большей частью переходят в остаток кремнекислоты. Титан и цирконий не мешают отделению кремнекислоты, если обезвоживание ироисходит в достаточно кислом растворе (солянокислом или сернокислом), но часто бывает, что небольшая часть ионов этих металлов все же обнаруживается в остатке кремнекислоты. Фосфаты титана и циркония очень мало растворимы, поэтому в присутствии фосфат-ионов обезвоживание следует про- [c.844]


    Мешающие ионы. Экстракцию проводят в присутствии цианида, который связывает в комплексы элементы группы цинка, и в п )исутствии цитрата, предупреждающего осаждение гидроокисей металлов группы аммиака. Можно также предупредить осаждение фосфатов щелочноземельных металлов добавлением гексаметафосфата . В этих условиях мешают только олово (И), таллий (1) и висмут. Последний может быть предварительно отделен дитизоном при pH 3,0 (висмут переходит в слой хлороформа, свинец остается в водном слое). Олово (И) можно предварительно окислить до олова (IV). Таллий (I) в количестве 1 мг можно отделить от свинца, экстрагируя дитизонат свинца при pH 6,0—6,4. Мешают окислители их надо восстановить добавлением гидроксиламина. [c.974]

    Перспективно применение неорганических ионитов для разделения близких по свойствам элементов, разделения сложны. систем, например, для отделения Си + от Zn2+ и Со + (гидратированная двуокись олова) Na+ от К+ и для отделения их от других элементов (молибдофосфат аммония и некоторые другие сорбенты) для отделения Na+ от К+ s+ от Rb+ (фосфат циркония) АР+ от Сг + и Fe + Со + от Ni + и Мп + [150] UOl от Th + Zn2+ от Hg и d2+ [215], Li+ и Na+ (катионит ИСМ-1) [278]. [c.202]

    Бериллий принадлежит к аналитической группе гидроокиси аммония. Он полностью осаждается аммиаком при pH = 8,5 вместе с другими членами группы (железом, алюминием, хромом). Как обычно, в растворе не должно быть фторидов, кремнезема, органических веществ и фосфатов. От алюминия, которому бериллий обычно сопутствует, он лучше всего отделяется 8-окси-хинолином алюминий осаждается из буферного уксуснокислого раствора, имеющего pH = 5,7, а бериллий осаждается этим реактивом из щелочного раствора. Бериллий не образует осадка с купфероном и, таким образом, может быть отделен от таких элементов, как железо и титан, которые этим реактивом переводятся в осадок. Железо, хром, никель, кобальт, олово, молибден, цинк и свинец могут быть отделены от бериллия путем электролиза раствора с использованием ртутного катода. При этом бериллий остается в растворе. [c.132]

    Оксихинолин осаждает уран (VI) из растворов с pH в преде-J ax от 4,1 до 13,5 [8, 553]. При осаждении из растворов с pH 10— 12 уран отделяется от фосфатов, тартратов, небольших количеств фторидов, оксалатов, лактатов и гидроксиламина [436, 846]. Однако одновременно с ураном 8-оксихинолин осаждает также очень много других элементов. Осаждение урана (IV) также мало избирательно, как и осаждение урана (VI). За счет соответствующего подбора pH уран может быть отделён от ряда элементов, в частности. Из растворов, содержащих едкий натр, 8-оксихинолиц не осаждает олова, алюминия, бериллия и щелочноземельных металлов. Методики осаждения урана (VI) из слабокислых и щелочных растворов приводятся в разделе Весовые методы определения . Однако практического значения отделение урана при помощи 8-оксихинслина [c.275]

    Бертьо и Тери [334] рекомендуют осаждать висмут в присутствии свинца при помощи КВгОз и КВг нз слабокислого раствора. Этот метод применим одинаково хорошо при определении висмута в очень чистом свинце и в свинце, содержащем немного сурьмы и олова другие примеси — Аз, Си, Ре, С(1, 2н отделению не мешают, поскольку они присутствуют в весьма незначительных количествах. Определение висмута заканчивают колориметрически реакцией с иодидом калия и цинхонином. Можно также осадок бромокиси растворить в азотной кислоте и осадить висмут фосфатом натрия. [c.52]

    Исследовано [1337] электрохроматографическое поведение Au(III) на бумаге, пропитанной фосфатом олова. Разработаны методы разделения смесей Аи—Pd(II)—Си и Аи—Pt(IV)—Си. Предложен [1391] электрохроматографический метод отделения золота от U(VI), Pt(IV), TI, Ni. Электролитом для отделения U, Pt и Т1 является 0,50 М Na,S04 (pH 6,5), для отделения Ni — 0,1 М (NH4)2S203 + 6,0 М NH4OH + 0,0050 М NaOH (pH И). [c.102]

    Ионы Сг(И1) необратимо сорбируются на арсените олова 8п0(А80з0Р1) Н2О в Н+-форме и отделяются от Ге(П), 2п(И), Мп(П), Mg(II), которые элюируют 1 М раствором К114К0з [986]. Коэффициент концентрирования Сг(1П) из морской воды на гранулах Т1(0Н)4 очень высок (после 30-суточного контакта равен 1000) [136, с. 140]. Сорбцию на Ге(0Н)з используют для получения радиохимически чистого Сг и отделения от вещества мишени ( У) и радиоактивных загрязнений (Т1 и Зс) [136, с. 343]. Степень сорбции Сг(1П) на гидроокиси, фосфате, молибдате и вольфрамате циркония увеличивается с ростом pH раствора [90]. [c.141]

    Для хроматографического отделения хрома от других элементов применяют различные сорта бумаги Ватман № 1 [615, 730, 733, 746, 921, 982, 984, 985, 1048, 1086], Ватман № 2 [879-882], Ватман № 3 [290, 312, 1019] и Ватман № 4 [641], Шлейхер и Шюль № 2040 [641] и № 2043 [615, 746, 1087], Нидершлаг WF-14 [487], бумага марки FN-3 [230], бумага, выпускаемая Ленинградской фабрикой им. Володарского марка Б ( быстрая ) [290], марка С ( средняя ) [169], марка М ( медленная ) [230]. Кроме того, используют бумагу на основе диэтиламиноэтилцеллюлозы [1043], бумагу, импрегни-рованную фосфатами циркония [744, 1020] и олова [166], арсена-тами олова и титана [987], ферроцианидом олова [988]. Описаны методы разделения смесей элементов на бумаге, пропитанной катионитом Sel-K5 (дифенилкарбазидной смолой) [1078]. [c.145]


    Для отделения тяжелых щелочных металлов (особенно для селективного отделения цезия) перспективны разнообразные неорганические нонооб-менники (см. гл. 6) нерастворимые гетерополикислоты и их соли [14], комплексные цианиды некоторых элементов и соединения типа фосфатов (15], арсенаты, молибдаты и волы1)раматы четырехвалентных элементов (цирконий, титан, олово). Для селективной сорбции нонов натрия был приготовлен ионообменник на основе гидратированного пентоксида сурьмы [16, J7], Ионы натрия сорбируются из 6—12 М НС1 никакие другие элементы (кроме тантала и фторидов) не сорбируются. [c.158]

    Охфеделение превращением мышьяка в арсенат серебра и титрованием методом Фольгарда. Осаждение мышьяка (V) в виде арсената серебра, растворение последнего в азотной кислоте и титрование серебра в полученном растворе методом Фольгарда является очень хорошим споеобом определения мышьяка, особенно пригодным для применения после отгонки мышьяка е соляной кислотой и отделения его в виде сульфида. Германий и те малые количества сурьмы и олова, которые могут в этом случае сопровождать мышьяк, определению не мешают. Этот метод не может применяться для анализа веществ неизвестного качественного состава, так как имеется болыАе число анионов, также осаждающихся в виде солей серебра, например фосфат-, ванадат-, молибДат- и хро мат-йоны. Следует избегать большого избытка аммонийных и натриевых солей. [c.310]

    Для отделения циркония от титана, алюминия, хрома, кобальта, никеля, меди, урана, ванадия, тория и молибдена, а также от таких малых количеств кремнекислоты и вольфрама, какие могут остаться в растворе после обезвоживания выпариванием с кислотой, применяют осаждение /г-пропиларсоновой кислотой из горячего разбавленного (3 100) солянокислого раствора и последующее нагревание раствора в течение 30— 60 мин. Осадок промывают горячей водой Если присутствуют большие количества железа, как в случае анализа стали, осадок и фильтр разлагают осторожным нагреванием с 10 мл солян(ш кислоты, раствор разбавляют до 100 мл водой и цирконий осаждают "бнова. Осадок можно прокалить в фарфоровом тигле до ркиси 2тО . Олово частично осаждается, но его можно отделить обработкой прокаленного осадка иодидом аммония, как указано на стр. 342. "Если в анализируемом растворе цри-сутствуе.т достаточное для осаждения циркония количество фосфора, выделившийся осадок отфильтровывают и для отделения циркония от фосфат-ионов сплавляют с карбонатом натрия. Плав выщелачивают водой, нерастворимый остаток отфильтровывают, прокаливают, затем сплавляют с пиросульфатом и растворяют плав в воде, содержащей несколько капель серной кислоты. [c.639]

    На том же иринцине основаны определения мышьяка в никеле и меди [130] и в мышьяковистых сплавах [75], отделение мышьяка от сурьмы и олова [129], определение арсенита в фармацевтических препаратах [222] и в арсенонирите [224]. Интересно, что арсенат железа (III) ведет себя так же, как фосфат железа (III). При промывке возникают трудности, аналогичные описанным выше по данным Ио-шино [224], раствор перед ионообменным разделением целесообразно восстановить сернистым газом. Отделение железа (II) от мышьяка протекает легко. [c.257]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Фосфат алюминия AIPO4 мол< ет быть выделен в аммиачной среде в присутствии ЭДТА, тартрат- и цианид-ионов и отделен таким способом от меди, цинка, олова (IV), железа (III), марганца, свинца, никеля и кобальта. [c.105]

    Отделение следов фосфата. При осаждении гидроокиси алюминия фосфат-ионы увлекаются осадком в виде AIPO4. Из этого осадка можно затем удалить германий, олово (IV) и мышьяк (V), обрабатывая его при нагревании смесью кислот HF + НС1 -f НВг. В остатке определяют фосфат-ионы колориметрическим способом. [c.1087]

    Для определения олова в металлическом индии по ДИП на приборе А-3100 (модель 3) нами были использованы ранее разработанные условия отделения олова соосаждением с фосфатом бериллия в присутствии ЭДТА и с последующим полярографированием на фоне ЗМ НС1 с добавкой желатины [216]. [c.173]

    Значительно позднее Пантани и Пиккарди [160] предложили применять для определенпя платины, родия, иридия, золота и палладия бромид олова (II), Спектр желто-коричневого раствора комплексного соединения палладия с реагентом имеет максимум светопоглощения при 385 ммк и плечо при 440—460 ммк. Эту область длин волн используют для определения палладия, чтобы избежать мешающего действия бромида олова (II), поглощающего свет ниже 400 ммк. Закон Бера выполняется при концентрациях палладия 1 —10 мкг/мл. Изменение кислотности и концентрации олова (II) влияет на результаты. Оптимальная концентрация кислоты равна 3 Л1, бромида олова(II) более 0,1 М. Окрашенное комплексное соединение палладия можно экстрагировать изоамиловым спиртом. Спектр такого экстракта не содержит максимума при 385 льик-. Устойчивость окраски экстракта увеличивается, если в водной фазе присутствует хлорная кислота. Палладий можно определить в присутствии иридия. Отделение палладия от платнны и родия осуществляют обычными мето.тами, Метод Эрса с использованием фосфата олова(П) (методика 173) лучше метода с использованием бромида олова(II). [c.224]

    Метод основан на образовании желто 1 фосфорномолибденовой гетеро-иоликислоты, которую экстрагируют эфиром и восстанавливают хлористым оловом до окраняенного в синий цвет комплексного соединения. Кремний ие мешает определению. Соединения фосфора низшей валентности окисляют до ортофосфорной кислоты перманганатом калия. Отделение фосфора и железа от вольфрама производят путем соосаждения фосфат-ионов с коллектором — гидроокисью кальция в растворе едкого кали железо при этом соосаждается в виде гидроокиси. Мьиньяк отгоняют в виде А8С1 из солянокислого раствора в присутствии бромистого аммония. [c.571]

    Онределению магния при помощи титанового желтого мешают вещества, которые полностью или частично препятствуют осаждению Mg(0H)2 раствором едкого натра. К таким веществам относятся соли аммония и анионы, осаждающие магний, например фосфаты. Некоторые катионы вызывают понижение или увеличение интенсивности окраски. Ослабление окраски в присутствии алюминия, цинка или олова объясняется адсорбцией образующегося алюмината, цииката или станната гидроокисью магния, что приводит к уменьшению адсорбции красителя этой гидроокисью ]10]. Усиление окраски, вызываемое некоторыми металлами (например, Ре, Сп, Мп, N1), обусловливается окраской их гидроокисей и образованием их окраишнных адсорбционных соединений с красителем [24]. Некоторые металлы можно маскировать, например медь — цианидом, железо(1П) — триэтаноламином [25]. Отделение мешающих металлов путем их осаждения моя ет привести к некоторым потерям магния вследствие соосаждения. [c.225]

    Борная кислота в значительной своей части захватывается осадком кремнекислоты. Ее можно удалить в виде борнометилового эфира перед выпариванием раствора для обезвоживания кремнекислоты. Вольфрамовая кислота сопровождает кремнекислоту. Она растворяется в растворе аммиака. В присутствии олова (IV) обезвоживание кремнекислоты надо проводить серной кислотой, чтобы олово осталось в растворе (в виде комплексного сульфата). Ниобий и тантал большей частью переходят в остаток кремнекислоты. Титан и цирконий не мешают отделению кремнекислоты, если обезвоживание происходит в достаточно ки лo растворе (солянокислом или сернокислом), но часто бывает, что небольшая часть ионов этих металлов все же обнаруживается в остатке кремнекислоты. Фосфаты титана и циркония очень мало растворимы, поэтому в присутствии фосфат-ионов обезвоживание следует проводить при большом количестве остающейся свободной серной кислоты. Остаток кремнекислоты может быть загрязнен также основными солями висмута и сурьмы. [c.680]


Смотреть страницы где упоминается термин Олово отделение от фосфатов: [c.239]    [c.171]    [c.24]    [c.124]    [c.150]    [c.63]    [c.153]    [c.124]    [c.718]    [c.90]    [c.301]    [c.79]    [c.197]    [c.171]    [c.876]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.872 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфат оловом

Фосфат-ион отделение



© 2025 chem21.info Реклама на сайте