Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород биологическая роль соединени

    Биологическая роль каталазы, по-видимому, состоит в защите биохимических систем клетки от токсического воздействия перекиси водорода, которая, как указывалось, образуется при действии флавиновых окислительных ферментов. Основной процесс, ускоряемый пероксидазами,— окисление определенных химических соединений перекисью водорода. Особо следует упомянуть цитохром с-пероксидазу. Окисление цитохрома с в присутствии этого фермента происходит в десятки раз быстрее, чем в присутствии других пероксидаз. Цитохром с-пероксидаза, или, короче, цитохромоксидаза, называется еще цитохромом аз и содержит в своей активной группе ионы меди. [c.210]


    Биологическая роль важнейших соединений водорода и нх применение в медицине. Вода — одно из самых важных и распространенных на Земле соединений водорода. Водное пространство занимает почти 75 % поверхности земного шара. В организме взрослого человека в среднем содержится 65—67 % воды, у эмбрионов (4-месячных) — 94, у новорожденных — 74 %  [c.227]

    Возникновение в ходе эволюции фотоавтотрофных бактерий, обладающих способностью вовлекать неорганический углерод в обмен веществ за счет энергии солнца, сыграло большую роль в дальнейшем развитии жизни ка Земле. Вместе с тем, специфичность, малая распространенность и относительно низкая химическая устойчивость соединений, используемых этими организмами в качестве доноров водорода, ограничивали роль бактериального фотосинтеза в экономике органической жизни на Земле. Необходимо также учитывать, что для восстановления СОг пурпурные и зеленые бактерии нуждаются в богатых энергией донорах электронов, вследствие чего эти организмы лишь в малой степени способствуют накоплению свободной энергии в живом мире. Таковы причины, по которым бактериальный фотосинтез не мог сколько-нибудь существенно сказаться и на общих условиях, на общем характере жизни на Земле, поскольку остатки соединений водорода, используемых в ходе этой функции, принадлежат к веществам, биологически мало активным и мало ценным. [c.101]

    Характерной особенностью межмолекулярных водородных связей является их направленность три атома Л, Н и 5, участвующие в образовании водородной связи, расположены на одной прямой. При этом расстояние Л — Н...В для различных веществ составляет 2,5— —2,8 А. Посредством водородных связей молекулы объединяются в димеры и полимеры. Такая ассоциация молекул приводит к повышению температуры плавления и кипения, увеличению теплоты парообразования, изменению растворяющей способности. Водородные связи обусловливают аномально высокую диэлектрическую проницаемость воды и спиртов по сравнению с диэлектрическими свойствами других жидкостей, молекулы которых имеют дипольные моменты того же порядка взаимную ориентацию молекул в жидкостях и кристаллах параллельное расположение полипептидных цепочек в структуре белка поперечные связи в полимерах и в двойной спирали молекулы ДНК. Благодаря своей незначительной прочности водородная связь играет большую роль во многих биологических процессах. Характерно, что молекулы, соединенные водородными связями, сохраняют свою индивидуальность в твердых телах, жидкостях и газах. В то же время они могут вращаться, переходить таким путем на одного устойчивого положения в другое. Кроме водорода промежуточным атомом, соединяющим два различных атома, может служить дейтерий, который, как водород, расположен на линии А П...В. При такой замене водорода на дейтерий энергия связи возрастает до нескольких десятков джоулей на 1 моль. [c.133]


    Иа ааре существования органической химии предметом ее изучения служили соединения, построенные только из углерода, водорода, азота и кислорода. Лишь немногие химики-органики, нередко объединявшиеся в отдельную группу, изучали соединения, содержаи ие неорганические элементы . По мере развития теоретической органической химии все яснее вырисовывалась роль гетероатомов в биологических процессах кроме того, число химиков-органиков значительно возросло. Вот почему в литературе стало появляться все больше и больше работ, которые нельзя уже было строго разграничить на органические и неорганические. [c.326]

    Еще более существенную роль в формировании биологических последствий играют продукты радиолиза воды, которая составляет 60—70% массы биологической ткани. Под действием ионизирующего излучения на воду образуются свободные адикалы Н и ОН, а в присутствии кислорода также свободный радикал гидропероксида (НО г) и пероксида водорода (Н2О2), являющиеся сильными окислителями. Продукты радиолиза вступают в химические реакции с молекулами тканей, образуя соединения, не свойственные здоровому организму. Это приводит к нарушению отдельных функций или систе.м, а также жизнедеятельности организма в целом. [c.68]

    Дезоксисахара. У дезоксисахаров одна из гидроксильных групп, присоединенных к кольцевой структуре, замещена на атом водорода. Они образуются при гидролизе ряда соединений, играющих важную роль в биологических процессах. Примером может служить дезоксирибоза, входящая в состав нуклеиновых кислот (ДНК)  [c.178]

    Введение. Большое количество химических соединений содержит водород и углерод, сообразно с этим существует много процессов, в которых оба элемента играют существенную роль. Для установления механизма реакций и решения других химических и биологических проблем необходимо проследить путь, который проходят атомы водорода и углерода. [c.426]

    Самый маленький радиус атома имеет водород, но он обычно не принимает участия в образовании скелета органических соединений. Он как бы заполняет пустоты между отдельными группами органических молекул и цементирует их. Водородная связь играет выдающуюся роль в образовании вторичной, третичной и т. д. структур биохимических образований. Основное количество атомов водорода заключено в воде, на долю которой приходится более 90% массы живой клетки. Вся химия клетки основана на том, что растворителем в клеточных системах служит вода. Свойства молекул, да и сами органические молекулы, были бы совершенно иными, если бы вместо НгО использовался другой растворитель. В принципе можно представить живую систему, использующую в качестве растворителя, например, этиловый спирт или аммиак. Однако химия такой системы была бы уже другой и принципы построения молекул были бы в ней тоже другими. Живая биохимическая система (согласно теории А. И. Опарина) в условиях нашей планеты возникла в воде, и свойства молекулы НгО были частью программы биохимической эволюции, предшествовавшей эволюции биологической. [c.176]

    Другим активным химическим фактором был поток электронов, возникавший вследствие распада изотопа К °. По Гершману, синтез перекиси водорода мог играть роль в отборе биологически важных веществ — конкуренцию выдержали лишь те системы, которые располагали эффективными катализаторами, разлагающими перекись. Каталаза, действительно, относится к числу сильнейших катализаторов распада перекиси водорода. Глицин и янтарная кислота, по мнению М. Кальвина, и послужили сырьем для образования порфириновых систем. Образовавшийся железопорфириновый комплекс, в свою очередь, катализирует процессы, ведущие к синтезу протопорфиринов, так что процесс приобретает авто-каталитический характер. С другой стороны, система перекись водорода — ионы железа способна, по-видимому, облегчать образование пирофосфатов из ортофосфатов и подготавливать материал, необходимый для получения аккумуляторов энергии, т. е. соединений, содержащих макроэргические пирофосфатные связи. [c.141]

    Остальные из названных выше элементов металлы. Каковы же их функции Какая роль, например, магния, для чего нужны организму калий и натрий, каковы функции ионов кобальта, сделавшие его необходимым для нормальной работы организма Не всегда удается дать исчерпывающие ответы на подобные вопросы. В дальнейшем мы изложим те сведения о роли ионов металлов в ферментных системах, которые могут считаться надежно установленными. Природа экономно использует металлы — их содержание в организмах невелико и ион каждого вида выполняет различные функции. Чаще всего они связаны с усилением действия биологических катализаторов или образованием специфических активных групп катализаторов — металлосодержащих ферментов. Известно, что металлы, как правило, входят в состав организмов в виде комплексных соединений. Так, железо с азотсодержащими веществами образует сложный комплекс — гем. Гем вступает во взаимодействие с белками, и в зависимости от того, с каким белком он соединился, получающееся вещество приобретает различные свойства. В одном случае получается превосходный переносчик кислорода — гемоглобин, в другом — фермент, разлагающий перекись водорода,— каталаза, в третьем — фермент пероксидаза и т. д. [c.10]


    При прекращении доступа кислорода воздуха к тканевому препарату при наличии соединений, акцептирующих водород (метиленовая синь), и тканевых ферментов некоторые вещества, например углеводы, могут окисляться и без участия кислорода. В. И. Палладии в процессах биологического окисления особую роль уделял кислороду как акцептору водорода. [c.193]

    Рибофлавин дает соединение с фосфорной кислотой по месту крайнего гидроксила (5 ) в боковой цепи. Но это обстоятельство не отражается ни на биологической, ни на каталитической активности рибофлавина. Фосфорная кислота здесь осуществляет, повидимому, лишь более прочную связь рибофлавина с белковым компонентом. Доминирующую роль приписывают наличию группы —ЫН—в 3-м положении. Имеют значение также метильные группы в 6-м и 7-м полол<ениях. Перемещение этих радикалов в 5-е или 8-е положение или замещение водорода в группе—МН—приводит к потере физиологического действия. [c.416]

    Совмещенные гибридные процессы могут представлять интерес еще и потому, что в них могут быть смоделированы и реализованы процессы са-моочистки, протекающие в природных средах. В природных условиях трансформация и разложение органических веществ биогенного происхождения и антропогенных органических поллютантов, а также естественная самоочистка экосистем происходят, как правило, в результате одновременного протеканрм биологических, химических и фотохимических процессов [9, 22, 23]. В абиогенной трансформации соединений, в частности, известна важная роль перекиси водорода [22,23], металлов переменной валентности (Ре, Мп), титан содержащих минералов, ультрафиолетовой составляющей солнечного излучения [9, 23]. В биогенной трансформации различных органических соединений в почвенных и водных средах ведущая роль гфинадлежит микроорганизмам. [c.230]

    Использование тяжёлого кислорода в биологических исследованиях. Касаясь использования кислорода, меченого в биологических исследованиях, необходимо отметить работы Б. Б. Вартапетяна [15-17], проведённые в Институте физиологии растений (ИФР) АН СССР, который изучал скорость поступления и распределение Н О в тканях различных органов растений фасоли. Автор обнаружил, что не во всех органах растений сразу достигается равновесие между водой в тканях растений и водой питательного раствора. В листьях и корнях растений имеется какое-то количество труднообмениваемой воды. В других работах автор исследовал с использованием Нз О и 2 окисление катехинов, которые играют большую роль для получения качественного чая при его технологической переработке. Было показано, что в состав окисляемых соединений включается как атмосферный молекулярный кислород, так и кислород Н2О. Наряду с прямым включением в состав конденсированных продуктов, молекулярный кислород используется как акцептор водорода субстрата окисления. В своих исследованиях дыхания растений с использованием и Н О автор показал, что молекулярный кислород, поглощаемый из атмосферы при дыхании проростков пшеницы, не выделяется прямо с СО2 дыхания, а идёт на образование Н2О в тканях растения, тогда как изотопный состав кислорода углекислоты дыхания соответствует изотопному составу воды ткани. Автором разработан метод для изотопного масс-спектрометрического анализа кислорода органических соединений. [c.552]

    Виланд, перенося свою теорию в область биологических окислительных процессов, представляет себе все реакции окисления и восстановления, совершающиеся в клетке, как процессы дегидрирования, и определенно признает тождество окислительных ферментов. Оксигеназы, по его мнению, не активируют молекулярный кислород с образованием перекисей, а ослабляют связь водорода в гидратах и сообщают ему способность к непосредственному соединению с молекулярным кислородом. Подобным же образом роль пероксидазы сводится будто бы не к перенесению перекис ного кислорода на окисляемое вещество, а к подготовлению водорода в гидрате к окислению перекисью водорода. Так как нельзя отрицать глубокой аналогии между системой пероксидаза — перекись водорода и системой сернокислая закись железа — перекись водорода , то по смыслу теории дегидрирования следовало бы также и для соли железа допустить способность активировать водород. Этого шага Виланд, однако, не делает и признает, что металлические соли и перекись водорода соединяются, образуя неустойчивые перекиси металлов, содержащие кислород с высоким потенциалом. Последние действуют, как истинные окислители. [c.303]

    Если предположить, что в биологических окислительных процессах активирование кислорода не играет никакой роли, то необходимо допустить, что действие пероксидазы и оксигеназы не имеет никакого отношения к явлениям самопроизвольного окисления и их ускорению иод влиянием катализаторов. Виланд не останавливается перед этим решительным шагом и приписывает окспгеназе и пероксидазе свойство активировать водород. По его мнению, оксигеназа активирует не молекулярный кислород, а водород субстрата и делает его сиособн ым к непосредственному соединению с молекулярным кислородом то же действие оказывает и пероксидаза, с той только разницей, что активиро] аиный ею водород она направляет не на молекулярный кислород, а на слабосвязанный кислород перекиси. Этой гипотезой Виланд подводит действие этих ферментов, которые до сих нор рассматривались как окислительные, под свою теорию дегидрирования. [c.520]

    Выше уже рассматривалось многостороннее влияние, оказываемое веществами фенольной природы на жизнедеятельность растительной клетки. Здесь мы остановимся на вопросе о возможной роли окислительных превращений фенольных веществ в защитных реакциях растения. Биологическая активность фенольных соединений в большой мере зависит от высоковыраженной способности к окислению. Этим определяется активное участие ряда веществ (например, пирокатехин, пирогаллол, хлорогеновая кислота) в окислительном метаболизме растений в качестве переносчиков водорода (электрона) в реакциях терминального окисления, катализируемых фенолоксидазами. [c.265]

    Водоросли, усваивая простые неорганические соединения, участвуют в самоочищении водоема. Клетки зеленых водорослей могут быть биогенным источником пероксида водорода, который образуется в клетке под действием солнечного света либо в результате внеклеточных процессов окисления растворенных в воде веществ, выделяемых водорослями. Особенно велика роль водорослей в удалении из воды избытка соединений азота и фосфора. Поэтому их часто используют в биопрудах, симбиотенках и других сооружениях для удаления азота и особенно фосфора на конечных стадиях биологической очистки сточных вод. Однако при нарушении равновесия между фотосинтезом и дыханием часть органических веществ, синтезированных водорослями, поступает в воду, т.е. происходит вторичное загрязнение водоемов. Во избежание этого необходимо удалять избыток фитопланктона и фитобентоса или создавать условия в водоеме, при которых первичная продукция утилизируется на последующих трофических уровнях. [c.107]

    Аскорбиновая кислота и гидрохинон в растительных и животных клетках могут участвовать в окислительно-восстановительных реакциях [Гудвин, Мерсер, 1986], выполнять роль антиоксидантов [Кения и др., 1993 Buettner, Moseley, 1992]. Известно, что гидрохинон, как и другие фенолы, участвует в различных метаболических процессах растений, однако его функции и свойства до конца не изучены. Попеременно окисляясь и восстанавливаясь, фенольные соединения служат связующим звеном между водородом дыхательного субстрата и кислородом окружающей среды [Андреева, 1988]. Используя изотопную метку было показано, что основным местом образования фенольных соединений являются молодые ткани растений [Запрометов, 1985] особенно высокая скорость синтеза фенолов наблюдается при освещении в хлоропластах. В этих органеллах в процессе фотосинтеза с высокой скоростью образуются полифенолы сравнительно простой структуры, которые затем транспортируются в другие компартменты клетки [Андреева, 1988]. Биологическое действие фенольных соединений в клетке обусловлено наличием гидроксильных групп, которые способны к ступенчатой отдаче электронов [Барабай, 1984]. В инфицированных растениях активированный кислород может быть посредником в противоинфекционном действии растительных фенолов, которые способны ингибировать протекание цепных реакций метаболизма, запускаемых свободными радикалами [Аверьянов, Исмаилов, 1986]. [c.62]


Смотреть страницы где упоминается термин Водород биологическая роль соединени: [c.110]    [c.33]    [c.353]    [c.731]    [c.61]    [c.12]    [c.250]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Водород соединения



© 2025 chem21.info Реклама на сайте