Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Светорассеяние макромолекулами

    Мицеллы ПАВ по размерам и молекулярно-кинетичес-ким свойствам близки к макромолекулам высокомолекулярных соединений, и для определения мицеллярной массы ПАВ пригодны те же методы, которые применяются для нахождения молекулярной массы полимеров. Эти методы основаны на измерении интенсивности светорассеяния, скорости диффузии, скорости седиментации в поле центробежной силы ультрацентрифуги. (В последнее время предложен метод, основанный на измерении оптической плотности мицеллярных растворов, содержащих солюбилизированный олеофиль-ный краситель. Однако он находит лишь ограниченное применение — пригоден для неионогенных ПАВ с невысокой степенью оксиэтилирования.) [c.157]


    Основными являются методы осмометрии, диффузии, светорассеяния, ультрацентрифугирования и измерения вязкости. Общие представления о первых четырех методах измерения даны в гл. III—V. Осмотическое давление зависит от числа макромолекул, поэтому осмометрический метод дает среднечисловое значение Я. Интенсивность рассеяния света зависит от общего количества дисперсной фазы, поэтому метод светорассеяния дает Mw Близкими к Mw получаются значения М, найденные методами ультрацентрифугирования и диффузии. [c.335]

    Теорию светорассеяния развил лорд Рэлей для сферических, не поглощающих свет, непроводящих частиц. При прохождении световой волны переменное во времени электромагнитное поле вызывает их поляризацию. Возникающие диполи с переменными электромагнитными моментами являются источниками излучения света. В однородной среде свет, излучаемый всеми диполями, вследствие интерференции распространяется только в первоначальном направлении (принцип Гюйгенса). Если же в среде имеются неоднородности с другим показателем преломления, например, коллоидные частицы или системы с флуктуациями плотности (обусловленные ассоциатами молекул или отдельными макромолекулами), значение дипольного момента в этих узлах становится иным и диполи испускают нескомпенсированное излучение в форме рассеянного света. Момент индуцированного диполя зависит от поля, т. е. от частоты или длины волны Я. [c.39]

    В отличие от коллоидной частицы, макромолекула обладает способностью изменять свою форму в весьма широких пределах, что позволяет применять к растворам ВМС статистику гибких цепей. Особенности свойств растворов ВМС (например, существование отдельных молекул, гибкость цепей) породили в последние годы тенденцию к выделению растворов ВМС из круга дисперсных систем с перспективой создания специальной дисциплины — физической химии ВМС и их растворов. Подобная тенденция вряд ли имеет достаточные основания. Отличительные признаки в известной мере формальны и не устраняют общности, существующей между этими двумя классами, несмотря на целый ряд различий, которые в настоящее время не представляются столь абсолютными. Так, исследование некоторых свойств (светорассеяние и другие) растворов ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание и оказываются весьма перспективными. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетерогенные золи при непрерывном, часто незначительном изменении состава среды. Так, белок, растворенный в воде до молекул, при добавлении спирта переходит в лиофобный золь при непрерывном изменении состава среды. [c.15]


    Мы не касаемся здесь специальных задач, когда исследуется светорассеяние макромолекул в текущем растворе. В этом случае необходимо привлекать гидродинамические теории (см. 86 гл. III). [c.275]

    Изучение гидродинамических свойств и светорассеяния разбавленных растворов позволяет получить определенную информацию о размерах и форме молекулярных клубков в растворе. Лишь в 0-растворителе макромолекулы приобретают конформацию статистического клубка, в котором взаимное расположение звеньев и сегментов может быть описано вероятностной кривой Гаусса. Тэта-состояния раствора можно достигнуть, либо варьируя соотношение растворитель - осадитель, либо изменяя температуру. Ниже приводятся значения 0-температур (в °С) для растворов полиакрилонитрила в различных растворителях  [c.115]

    Для полимеров особое значение имеет малоугловое светорассеяние (в области углов до 30°), с его помощью можно получать информацию о кинетике структурообразования в полимерах, о деформации и разрушении их кристаллитов, а также о степени полидисперсности. Даже в случае гомогенных полимерных систем из-за частичной ориентации макромолекул и наличия флуктуации плотности метод малоуглового светорассеяния дает весьма полезную информацию. Например, изучая рассеяние света растворами полимеров, можно получать важную информацию о конформационных превращениях их макромолекул. [c.233]

    Как влияет изменение конформаций макромолекул на вязкость и светорассеяние растворов полиамфолитов  [c.155]

    К среднемассовым относят такие методы определения молекулярной массы, которые основаны на установлении массы отдельных, макромолекул измерение скорости седиментации, скорости диффузии, светорассеяния в растворах полимеров. Значение среднемассовой молекулярной массы Л w представляет собой произведение массы всех фракций полимера на молекулярную массу фракции, отнесенное к ассе одной фракции Лiw= [c.18]

    Так, исследование некоторых свойств (светорассеяние и другие) раство-ров ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетеро- [c.17]

    Светорассеяние. В результате теплового движения макромолекул в любой среде всегда существуют флуктуации по концентрации н плотности, которые являются центрами рассеяния света. Рассеяние света молекулами определяется уравнением [c.82]

    Коэффициенты диффузии, макроскопически определяемые по экспериментальным данным, неразрывно связаны с микроскопическими параметрами, характеризующими тепловую подвижность сегментов макромолекул диффузионной среды. Многочисленные опытные данные, накопленные в настоящее время, убедительно показывают, что изменение любого фактора, влияющего на сегментальную подвижность макромолекул, приводит к соответствующему изменению микроскопического коэффициента диффузии. В этом смысле изучение диффузии, можно рассматривать как метод исследования полимеров, такой же, как, например, светорассеяние, рентгеноскопия, релаксация, сорбция. [c.22]

    Для макромолекул большего размера (диаметр клубка больше Х 20), например для виниловых полимеров со степенью полимеризации более 500, интенсивность светорассеяния зависит от угла, под которым проводится наблюдение. При оценке рассеяния света от различных участков макромолекулы вводится поправочный фактор рассеяния Pft который зависит от конформации макромолекулы. Для макромолекул любой формы Pff = 1 при О, с увеличением Означение уменьшается. В этом случае [c.205]

    Метод светорассеяния (оптический метод). Этот метод основан на свойстве крупных частиц в растворе (коллоидных частиц и макромолекул) рассеивать свет. В результате прозрачный для невооруженного глаза раствор оказывается мутным - оптически неоднородным. При распространении света через такую среду возникают вторичные световые волны той же длины, но другого направления, которые можно наблюдать в специальных приборах типа нефелометра - фотометрах светорассеяния. Метод дает среднемассовую молекулярную массу, а прн измерении светорассеяния в разных направлениях возможно оценить форму частиц. Метод точен, позволяет определять молекулярную массу до (2...3)х10 , но сложен в аппаратурном оформлении, а также требует высокой степени чистоты исследуемых растворов и окружающего воздуха. [c.177]

    Макромолекула полиэлектролита связывает противоионы. Поэтому полиион при взаимодействии с другими полиионами ведет себя как нейтральная система, что находит свое отражение в значениях второго вириального коэффициента, определяемого методом осмометрии (см. стр. 147) или светорассеяния (см. стр. 158) [80]. Противоионы могут специфически связываться ионизованными группами полиэлектролита — такое связывание зависит от химической природы макроиона и малого иона. Следует отличать это связывание, сводящееся к образованию солевых связей в фиксированных точках макромолекулы, от неспецифического связывания — образования ионной атмосферы, В солевой связи противоион находится на значительно меньшем расстоянии от полииона, чем то, на которое могут приближаться подвижные противоионы. Специфическое связывание противоионов определяет ионообменные свойства полиэлектролитов. Эти свойства имеют важные практические применения. Сшитые поперечными связями нерастворимые полиэлектролиты, набухающие в воде и других жидкостях, применяются в качестве ионообменных смол или ионитов [81], Иониты оказываются способ-и1 1ми сорбировать определенные ионы из растворов, что находит [c.170]


    Исследования растворов полиокса указывают на существование в них надмолекулярных частиц, что может быть причиной некоторых аномалий в свойствах. Так, электронномикроскопическое изучение частиц, полученных лиофильной сушкой распыленных разбавленных растворов полиокса (молекулярная масса около 200 тыс.) в воде и диметилформамиде, приводит к размерам частиц до 100 нм [136], что в 5—10 раз превышает оценки размера индивидуальных макромолекул. К аналогичным выводам приводят исследования светорассеяния растворов, которым приписывается микрогетерогенный характер [137]. Видимо, межцепная ассоциация является причиной [c.269]

    Эксперименты по изучению светорассеяния макромолекул в потоке связаны со значительными трудностями как вследствие существенного усложнения аппаратуры, так и вследствие необходимости достаточно обеспылить текущий раст-/, 10 вор. Этим объясняется [c.272]

    Светорассеяние позволяет оценивать также форму п конформации частиц макромолекул, если их размеры сопоставимы с длиной световой волны. Для этого необходимо измерить значения интенсивности света, рассеянного под разными углами. Основной экспериментальной трудностью измерений является очистки исследуемых объектов от пылг., создающей недопустимый фон рассеянного света. Для этой цели используют стеклянные и полттер-ные фильтры. [c.265]

    При увеличении степени диссоциации возрастает электростатическое отталкивание одноименно заряженных групп макромолекул, что приводит к существенному изменению их конформации в растворе, а именно цепи, свернутые в клубок, распрямляются и стремятся принять форму, приближающуюся к линейной. В результате этого увеличивается эффективный размер молекул и существенно изменяются физико-химические свойства растворов, например, возрастает вязкость, изменяется интенсивность светорассеяния. При уменьшении степени диссоциации макромолекулы, наоборот, сворачиваются, приобретая конформации с наибольшим значением энтропии в системе. Если pH раствора поддерживают постоянным, то в результате электростатического взаимодействия ионизированной части полярных групп и теплового двилсения уста [(а вливаются определенные конформации молекул. Состояние равновесия зависит от величины заряда полииона, состава раствора, температуры. [c.151]

    Определение молекулярного песа методом светорассеяния. Световые лучи, проходя че-рез растворы полимеров, вы .ывают свечение с неизменной длиной волны, ио в направлениях, отличающихся от первоначального направления пучка света. Это явление называют с в е т о р а с сеяние м. Интенсивность проходящего света зависит от концентрации и величины макромолекул полимера, рассеивающих свет. На свойстве растворов полимеров рассеивать свет основано определение их молекулярного веса. Этот метод является одним из наиболее точных методов определения молекулярного веса Интенсивиость рассеянного света выражают через величинх мутности т, определяемую как долю первичного пучка, рассеянную во всех направлениях при прохождении светом в растворе пути длиной 1 см. Если при прохождении л см начальная интенсивность света / уменьшится до величины /. то мутность определяется из соотношения  [c.82]

    В отличие от частицы суспензоида макромолекула способна изменять свою форму в весьма широких пределах. Несмотря на гомогенность молекулярных коллоидов они проявляют сходство с су-спензоидами по некоторым свойствам (например, светорассеяние и др.). Общность суспензоидов и молекулярных коллоидов не исчерпывается размерами частиц. Растворы высокомолекулярных соединений легко превращаются в гетерогенные системы при незначительном изменении состава дисперсионной среды. Например, белок, растворенный в воде, при добавлении спирта переходит в лиофобный золь. [c.73]

    Теория светорассеяния была развита лордом Рэлеем для сферических, не поглощающих свет, не проводящих частиц. При прохождении световой волны переменное во времени электромагнитное поле вызывает их поляризацию. Возникающие диполи с переменными электромагнитными моментами являются источниками излучения света. В однородной среде свет, излучаемый всеми диполями, вследствие интерференции распространяется только в первоначальном направлении, согласно принципу Гюйгенса. Если же в среде имеются неоднородности с другим показателем преломления, например, коллоидные частицы или системы с флуктуациями плотности (обусловленные ассоциатами молекул или отдельными макромолекулами), дипольные моменты приобретают в этих узлах иную величину и испускают неском-пенсированное излучение в форме рассеянного света. Момент диполя зависит от частоты, иначе говоря от длины волны X. Таким образом, интенсивность светорассеяния I должна быть функцией показателей преломления дисперсной фазы 1 и дисперсионной среды о, длины волны X, объема частицы V, поскольку поляризация—объемное свойство, а также от частичной V или весовой Сй = vУii. концентрации и, наконец, от интенсивности падающего света Я  [c.38]

    Так, исследооанке некоторых свойств (светорассеяние и другие) растворов ВМС позволяет обнаружить известную гетерогенность этих систем, а теории, основанные на представлении о макромолекуле как отдельной микрофазе, получают в настоящее время широкое признание. Общность же двух классов проявляется не только в свойствах, непосредственно связанных с размерами частиц, но и в существовании непрерывного перехода от одного класса к другому. Растворы ВМС легко превращаются в типичные гетерогенные золи при непрерывном, часто незначительном изменении состава среды. Так, белок, растворенный в воде до молекул, при добавлении спирта переходит в лиофобный золь при непрерывном изменении состава с реды. [c.16]

    Светорассеяние и поглощение света. Цепные молекулы полимеров нельзя обнаружить в растворах при ультрамикроскопиче-ских наблюдениях. Это объясняется тем, что растворы полимеров гомогенны и линейные макромолекулы приближаются к коллоидным частицам только по длине, а в двух других направлениях соответствуют размерам обычных молекул. Кроме того, коэффициент преломления полимеров, как правило, сравнительно близок к коэффициенту преломления среды. [c.361]

    Многие макроскопические характерпстики разветвленных полимеров определяются, помимо первично структуры молекул, пространственным расположением их звеньев. Так, например, при расчете средних размеров макромолекул, их гидродинамического радиуса пли интенсивности светорассеяния требуется проводить усреднение по вероятностной мере, которая учитывает не только способы химической связи фрагментов между собой, но и их взаимное расноложение в пространстве. Такая мера является необходимой для создания корректной теории формирования полимерных сеток с учетом внутримолекулярных реакций циклообразовапия. [c.146]

    Теория флуктуациоииого рассеяния света была развита Эйнштейном (1910) и особенно плодотворно применена для растворов макромолекул Дебаем (1947). В настоящее время измерения светорассеяния являются одним из наиболее важных методов исследования растворов белков и высокополимерных веществ. [c.56]

    III. 7), а также позволяет исследовать влияние измененш конфигурации макромолекул, их взаимодействия с различными веществами и другие изменения их состояния. В коллоидных растворах явления поглощения света осложняются явлениями светорассеяния и зависимостью поглощения от степени дисперсности частиц. [c.72]

    Среднемассовую ММ — Мщ, обычно определяют методами светорассеяния и седиментации. В этих методах используется сложное и дорогостоящее оборудование. Кроме того, при седиментации в ультрацен-трифуге необходимая длительность эксперимента Б некоторых случаях достигает нескольких недель. Эксперимент состоит в том, что раствор полимера помещают в ячейку, которая вращается в течение длительного времени. В результате достигается термодинамическое равновеспе, так что полимер распределяется по радиусу ячейки в соответствии с молекулярной массой фракций. При этом центробежная сила, действующая на макромолекулы, уравновешивается движущей силой, обусловленной диффузией и направленной противоположно градиенту концентрации. Определение ММ методом светорассеяния основано на том, что интенсивность рассеяния падающего света пропорциональна квадрату массы макромолекул. [c.74]

    Водные растворы ПВС — нестабильные системы. При хранении,растворов с концентрацией ПВС выше 1% (масс.) в них образуются ассоциаты макромолекул, что приводит к увеличению мутности и вязкости растворов. Изучение природы и поведения надмолекулярных частиц в системе ПВС — вода методами светорассеяния и спектра мутности [110] показало наличие зародышей кристаллизации даже в разбавленных растворах. В растворах 5—7%-ной концентрации образуются агрегаты со слабой связью, легко ориентирующиеся при низком напряжении сдвига и распадающиеся при высоком. При концентрации ПВС около 157о (масс.) наблюдается нарастание вязкости растворов в течение нескольких дней и образование геля, который не течет под действием малых напряжений сдвига. Процесс гелеобразования является следствием частичной кристаллизации макромолекул ПВС при их ориентации, сближении в растворе на длину нескольких сегментов и связывании межмолекулярнымй водородными [c.111]

    Растворение лигнина обычно протекает без значительного набухания, что характерно для сильно разветвленных полимеров, частицы которых в растворе имеют сферическую форму. Однако полиэлектролитная природа лигнина приводит к тому, что при изменении ионной силы раствора изменяются его характеристики (вязкость, светорассеяние и др.) из-за полиэлектролитного разбухания макромолекул, например, в водных растворах лигносульфоиатов (см. 13.1.3). [c.412]

    Так как синтетические высокомолекулярные соединения представляют собой смеси макромолекул с различными молекулярными массами, т. е. являются полидисперсными, можно определить лишь среднее значение молекулярной массы. Различные экспериментальные методы позволяют измерить молекулярные массы разной ст ени усреднения. Так, среднемассовая молекулярная масса определяется по данным светорассеяния, ультрацентрифугировамя и измерения вязкости,  [c.72]

    В водном растворе макромолекулы поливинилпиридина (ПВП) [ H( 5H4N) H,-] имеют форму клубков. Методом светорассеяния для ПВП с ММ = концентрация клубков найдена [c.19]


Смотреть страницы где упоминается термин Светорассеяние макромолекулами: [c.292]    [c.229]    [c.76]    [c.286]    [c.304]    [c.339]    [c.495]    [c.113]    [c.134]    [c.414]    [c.18]    [c.72]    [c.197]    [c.85]    [c.208]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.200 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Индикатриса светорассеяния растворов полимеров и свойства ансамбля макромолекул. Рассеяние света и жесткость молекулярной цепи

Светорассеяние в растворах макромолекул с жесткой цепью



© 2025 chem21.info Реклама на сайте