Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен аппаратура

    ГОСТом 5190-60 предусмотрены определенные сочетания номинальной производительности, давления ацетилена и систем ацетиленовых генераторов, предназначенных для питания ацетиленом аппаратуры газопламенной обработки металлов. Эти сочетания приведены в табл. 6. [c.30]

    При сливе ацетиленсодержащих вод в сосуды или аппаратуру, в которых может десорбироваться растворенный ацетилен, последние заполняют инертным газом, а для предотвращения попадания атмосферного воздуха воздушку снабжают гидрозатвором. Чтобы предотвратить загазованность и взрыв при аварийных ситуациях, в производстве концентрирования ацетилена предусматривают аварийные емкости, находящиеся под небольшим давлением азота, для слива из системы органического растворителя, насыщенного ацетиленом и другими взрывоопасными газами. [c.24]


    Наиболее характерные случаи аварий вызваны повышением содержания кислорода в газах пиролиза с последующим их взрывом в аппаратуре, загоранием ацетилена в трубопроводах в момент сброса взрывоопасных газов на факел, подсосом воздуха в аппаратуру с ацетиленом, загоранием полимеров при их выгрузке и транспортировании из испарителей. [c.30]

    Расчеты иа прочность аппаратуры, работающей лод давлением ацетилена ниже 1,4 ат, можно производить по обычным норма.м. Прочностные расчеты аппаратов с ацетиленом, в которых рабочее давление выше [c.68]

    Воздух, особенно в промышленных районах, содержит пыль, влагу, оксид углерода (IV) и ацетилен. Эти загрязнения могут вызвать повышенный износ турбокомпрессоров, забивку аппаратуры, что ухудшает теплопередачу и увеличивает гидравлическое сопротивление, и даже привести к взрывам в случае образования твердого ацетилена. [c.232]

    При нагревании до 500°С и при сжатии до давлений выше 2-10 Па ацетилен, даже в отсутствии кислорода, разлагается со взрывом. Разложение инициируется искрой и трением. Взрывоопасность ацетилена возрастает в контакте с металлами, способными образовывать ацетилениды, например, с медью. Это необходимо учитывать при выборе материала аппаратуры. С воздухом ацетилен образует взрывчатые смеси с пределами воспламенения 2,3 и 80,7% объема. При этом взрывоопасность смесей снижается при разбавлении их инертными газами (азот, метан) или парами. [c.244]

    Различные газы и пары (эфир, сероуглерод, водород, ацетилен, сероводород, углеводороды и др.) образуют с воздухом взрывчатые смеси. Воспламенение этих смесей может привести к тяжелым несчастным случаям. Перед зажиганием горючих газов и паров всегда нужно проводить пробу на гремучий газ. Необходимо следить, чтобы аппаратура и источник газа были герметичны. [c.6]

    В последнее время имеется стремление в производстве химических продуктов использовать не концентрированный, а разбавленный ацетилен. Сырой газ после очистки от сажи и гомологов ацетилена направляется на химический синтез, а затем уже выделяется продукт. Это целесообразно в том случае, если получающийся продукт выделить значительно легче, чем ацетилен, и это может компенсировать увеличение объема реакционно аппаратуры, вызываемое проведением реакции при меньшем парциальном давле ии ацетилена. В настоящее время такая схема разрабатывается применительно к получению ацетона, ацетальдегида, хлорвинила. [c.123]

    Гидрирование олефинов, ацетиленов и ароматических соединений. Сведения о катализаторах и аппаратуре [c.388]


    Показано, что в пламени воздух—пропан—бутан чувствительность определения натрия повышается в 10 раз при подогреве распылительной камеры до 200 С [167]. Сопоставлены пределы обнаружения натрия методом эмиссионной и абсорбционной спектрометрии при использовании одной и той же аппаратуры [678]. Приведены пределы обнаружения натрия при испарении его солей с зонда [412, 413]. В пламени оксид азота(1)—ацетилен предел обнаружения натрия составляет 1-10 мкг/мл по Зх-критерию и 10 г при определении его эмиссионным методом. При использовании графитовой печи НОА-72 предел обнаружения натрия составил 10 г [660]. Применение графитовой кюветы и лазера на красителе родамин 6Ж снижает предел обнаружения натрия до 3-10 ат/см [933]. [c.120]

    Паро-газовая смесь проходит через холодильник 6, где конденсируются пары воды, и поступает в скруббер 8, орошаемый водой для поглош,ения несконденсировавшегося ацетальдегида. Конденсат из холодильника 6 и раствор ацетальдегида из скруббера поступают в сборник 7. Из верхней части скруббера выходит отмытый от ацетальдегида газ, содержащий в основном ацетилен, который снова возвращается в смеситель 1. В циркулирующем ацетилене постепенно накапливаются инертные газы и, что особенно опасно, кислород. Поэтому аппаратуру периодически продувают, а циркуляционный газ выпускают в атмосферу. [c.218]

    Жидкофазные лабораторные реакторы обладают рядом отличий от газофазных, поэтому их целесообразно рассмотреть особо. Устройство аппаратов мало меняется от того, проводятся ли в них чисто жидкофазные или газо-жидкофазные реакции с твердым катализатором. Последний тип реакций, к которому относятся жидкофазное гидрирование, восстановление водородом, жидкофазное окисление молекулярным кислородом, ряд реакций оксосинтеза, реакций с ацетиленом и др., в настоящее время более распространен в технике, чем первый, к которому принадлежат реакции алкилирования, дегидратации и этерифи-кации. Жидкофазные и особенно газо-жидкофазные реакции в большинстве случаев проводятся под давлением, что, естественно, определяет конструкцию лабораторной аппаратуры. [c.360]

    Все перечисленные выше параметры взаимосвязаны и характеризуют чувствительность горючих веществ в смеси с окислителями к различным энергетическим импульсам воспламенения и вероятность загораний и взрывов в атмосфере или закрытой аппаратуре. Эти показатели имеют важное значение для прогнозирования возможных аварий на каждом техническом уровне взрывобезопасности производств, что подтверждается многолетним опытом. Например, аммиак (концентрационные пределы воспламенения 15—28% об., минимальная энергия зажигания 680 мДж) по объему производства, количеству объектов и процессов по его переработке на несколько порядков превосходит ацетилен. Однако число случаев воспламенения и взрыва ацетилена (концентрационные пределы воспламенения [c.21]

    Все эти части могут представлять собой конструктивно единое целое с газообразователем или выполнены в виде отдельных аппаратов, связанных трубопроводами. Кроме того, в состав оборудования ацетиленовых генераторов могут входить дополнительно промыватели, водоотделители, химические очистители, регуляторы давления ацетилена, осушители, обратные клапаны и др. Классификация ацетиленовых генераторов и предъявляемые к ним технические требования регламентированы ГОСТ 5190—67. Ацетиленовые генераторы, применяемые для питания ацетиленом аппаратуры газопламенной обработки металлов, классифицируют по следзтощим признакам производительности, характеру применения, давлению вырабатываемого ацетилена, способу приведения во взаимодействие карбида кальция с водой и способу регулирования выработки ацетилена. По производительности генераторы, предназначенные для газопламенной обработки металлов, могут выпускаться на номинальные производительности 0,8 1,25 3,2 5 10 20 40 80 160 и 320 м /ч ацетилена. В химической промышленности применяют генераторы производительностью до 2000 м /ч. На эти генераторы указанный ГОСТ не распространяется. По предельному давлению вырабатываемого ацетилена генераторы разделяются па две группы  [c.27]

    Стационарные генераторы низкого давления системы карбид в воду применяются и для пита)ния ацетиленом аппаратуры газопламенной обработки металлов. Это — серийно выпускаемые нашей лромышленностью генераторы типа ГНД, технические харак-теристйни которых указаны в табл. 6. [c.24]

    Переносной ацетиленовый генератор АСП-1,25 работает по кон-та.ктной системе в сочетании с варианто.м процесса вытеснание воды . Он предназначен для питания ацетиленом аппаратуры при [c.31]

    Прн взаимодействии ацетилена с водными растворами солей меди, серебра и ртути образуются осадки соответствующих ацети-ленидов металлов, характеризующиеся взрывчатыми свойствами. Ацетилен, содержащий влагу и аммиак, при длительном контакте с красной медью может реагировать с ней с образованием ацети-ленидов меди. При соприкосновении с серебром ацетилен способен образовывать взрывчатое ацетиленистое серебро. Содержание меди в материале аппаратуры, запорной арматуры, приборов и других устройств, применяемы-х в производстве ацетилена, не должно превышать 70%. [c.23]


    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого. ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, опасных с точки зрения выделения газа, устанавливают газоанализаторы. Сигнализаторы наличия горючих газов должны настраиваться на концентрацию 20% от нижнего предела взрываемости. [c.33]

    Некоторые аварии в производстве винилхлорнда связаны с загазованностью помещений ацетиленом, винилхлоридом, хлористым водородом. Аварийные выбросы в атмосферу производственных помещений взрывоопасных и токсичных газов чаще всего происходят в результате колебаний давления в системе и разрушения самодельных предохранительных мембран, имеющих большой диапазон срабатывания и не обеспеченных отводными трубами. Загазованность иногда создается разгерметизацией сальниковой арматуры, трубопроводов, полимеризаторов и другой аппаратуры, что объясняется низким качеством их изготовления и ремонта. Следует значительно улучшить качество изготовления и монтажа оборудования трубопроводов и арматуры, тщательно подбирать для них коррозионно-стойкие материалы и прежде всего разработать более производительные и надежные смесители ацетилена с хлористым водородом, контактные аппараты, компрессоры ацетилена и реак ционного газа, тепло- и массообменную аппаратуру для газовыде ления и ректификации пожаро- и взрывоопасных смесей под высо кйм давлением. [c.71]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Применение серебра и серебряных припоев при изготовлении аппаратуры также запрещается. Особо следует оговорить применение ртути. Хотя ртуть и не взаимодействует с ацетиленом, но ее окислы достаточно химически активны по отношению к С2Н2. Поэтому приборы с ртутным заполнением обязательно дожны иметь защитный слой жидкости, в которой плохо растворяется ацетилен. В качестве такой защитной жидкости рекомендуется употреблять 30%-ный раствор хлорида кальция. [c.109]

    Следует иметь в виду, что ацетилен при содрикосновении с медью и серебром образует взрывчатые вещества, поэтому применять медь в качестве инструментов для вскрытия барабанов с карбидом кальция или в качестве припоя для пайки ацетиленовой аппаратуры и в других местах, где возможно соприкосновение с ацетиленом, категорически запрещается. [c.208]

    Подготовка газа к разделению. В газах крекинга и пиролиза содержится ряд примесей, от которых их нужно предварительно очищать. Одни из них вызывают коррозию аппаратуры (НгЗ), други1 затвердевают при охлаждении (СО2, Н2О) и могут привести к закупорке аппаратуры, третьи близки к олефинам по температуре кипения и загрязняют получаемые фракции (С2Н2, метил-ацетилен). Кроме того, газ содержит пары жидких при обычных условиях углеводородов, представляющих значительную ценность (бензол, амилены). [c.47]

    Смесь ацетилена и хлор(гстого водорода пропускают через реакционное иростраиство, заполненное твердым катализатором. Исходные вещества долл ны быть сухими, чтобы не происходило чрезмерного образования ацетальдегида и излишней коррозии аппаратуры. Хлористый водород берут в небольшом избытке по отношению к ацетилену (5—Ю7о), что увеличивает степень конверсии ацетилена. Оптимальной температурой считается ]60—180°С, когда процесс идет достаточно быстро и в то же время не происходит ч))езмерного уноса сулемы, имеющей значительную летучесть. При [c.134]

    При этом новом методе конденсации альдегидов с ацетиленом, а также при проведении некоторых других его реакций необходимо компримировать и перекачивать ацетилен под давлением 5—20 ата. Прежде считалось опасным работать с ацетиленом под давлением выше 1,5 ата, но сейчас найдены условия безопасного обращения с компримированным ацетиленом, которые позволяют осуществлять промышленные операции в крупном масштабе. Для сжатия ацетилена немцы применяли обычные поршневые компрессоры, работавшие при малых скоростях со степенью сжатия, равной 2 1 — 3 1 это позволяло обеспечить требуемое охлаждение между ступенями. После каждого компрессора устанавливали пламяпреградители, представлявшие собой длинные трубы, заполненные проволочными спиралями или керамиковыми кольцами. Трубопроводы применяли по возможности более короткие и узкие. Трубы большого диаметра заполняли трубками диаметром 6,3 мм. В этих условиях тепло, выделявшееся при разложении ацетилена, рассеивается, что предотвращает вспышки, при которых развивается давление, в десять раз превышающее рабочее. Эти вспышки могут вызвать детонацию, при которой возникает давление в 100 раз больше рабочего. Аппаратура установки была рассчитана на десятикратное увеличение давления против рабочего это давало достаточный запас прочности при условии, что разложение ацетилена ограничивается простыми вспышками. [c.290]

    Значительно более простой в аппаратурном отношении метод газохроматографического определения С — Н был разработан Фогелем и Куатропе (1960). В противоположность описанным выше методам при этом не требуется применения системы ловушек для выделения продуктов сгорания и нет необходимости превращать воду в ацетилен. Сжигание проводят в бомбе в атмосфере кислорода, и газообразные продукты могут дозироваться из бомбы непосредственно в газохроматографическую аппаратуру. Прямой анализ СО2 и Н2О при применении кислорода в качестве газа-носителя возможен на колонке, заполненной диатомитом, содержащим додецилфталат. При этом вода дает отрицательный пик, хорошо пригодный для расчетов путем планиметрического определения площади пика. Этот очень простой метод позволяет проводить анализ за 17 мин. Троекратное определение ири очень хорошей воспроизводимости и точности результатов занимает лишь 40 мин. [c.252]

    Воздух, особенно в промышленных районах, загрязнен пылью, содержание которой доходит до 0,05 г/м . В нем присутствуют также диоксид углерода (0,03 объемн.7о). влага (до 50 г/м ), н ацетилен. Пыль и другие твердые частицы, попадая в турбокомпрессор, вызывают повышенный износ направляющего аппарата и лопаток, загрязняют поверхность теплообменников, ухудшая теплопередачу и увеличивая гидравлическое сопротивление установки. Влага, намерзая иа холодильных поверхностях, способна быстро забить аппаратуру. Диоксид углерода при (—130) — (170) °С также выделяется в виде твердых частии U может забивать оборудование. Ацетилен при температурах около —leO может выделяться в твердом виде, что предстапляет большую опасность, так как твердый ацетилен является сильным взрывчатым веществом. Поэтому воздух должен быть очищен от этих веществ. Чтобы обеспечить поступление более чистого воздуха, в некоторых установках забор воздуха предусмотрен с двух противоположных сторон в этом случае точка забора воздуха определяется господствующим в данное время jiaправлением ветра. [c.64]

    Ацетилен, содержащийся в коксовом газе, прн низких температурах кристаллизуется и может накапливаться в аппаратуре во взрывоопасных ко-лидествах. Для пачного удаления из коксового газа оксида азота (II), ненасыщенных углеводородов и ацетилена проводят процесс их гидрировавия на катализаторе. При этом протекают следующие реакцни  [c.75]

    Окись азота попадает с коксовым газом в блоки разделения или с конвертированным газом в аппаратуру для промывки его жидким азотом, конденсируется и образует с углеводородами (особенно с диеновыми) взрывоопасные нитросмолы. Накапливаясь в аппаратах, они могут разлагаться и самопроизвольно взрываться. Ацетилен при низких температурах способен кристаллизоваться и отлагаться в системе, что делает процесс фракционной разгонки коксового газа взрывоопасным [ 1 ]. [c.432]

    Очистка газов предусматривает удаление из промышленных или природных газов вредных и балластных прпмесей с том, чтобы очищенный газ был пригоден для трансиор-тирования, дальнейшей химической переработки и непосредственного использования. Газы очпщают от примесей, которые отравляют катализаторы, ухудшают качество продукции, вызывают коррозию п загрязнение аппаратуры. В ряде случаев, главным образом в процессах глубокого охлаждения, газ необходимо очищать от взрывоопасных примесей (например, удалять ацетилен при разделении воздуха, окись азота при разделении коксового газа, кислород при сжижении водорода). [c.213]

    Н, наполненную натронной известью (примеч. 3). Пройдя колонку, ацетилен поступает в колбу А, откуда по трубке Е попадает в промывную склянку Од, наполненную небольшим количеством воды. Из склянки Оа отходящий газ идет в стекляннный газометр У, представляющий собой склянку Вульфа (20 л). Вся аппаратура должна быть абсолютно герметична. [c.70]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    Отсюда, во-первых, следует, что при понижении давления от атмосферного до 100—70 мм рт. ст. энергетическая эффективность разряда увеличивается почти вдвое. Иными словамИ понижение давления метана резко активирует процесс/ электрокрекинга. Это наблюдение интересно сопоставить с установленным Н. И. Кобозевым и Е. Н. Ереминым [4] значительным ускорением термической реакции превращения метана в ацетилен при понижении давления. Во-вторых, следует обратить внимание на близкое совпадение энергетических эффективностей разряда при близких (пониженных) давлениях, но полученных в совершенно различной аппаратуре. В самом деле на укрупненной установке было получено значение К + К2 = 0,343 а с данной аппаратурой — i i + /С2 = = 0,373 м /квтч. [c.398]

    Аппаратура. В пламенном фотометре ПФ-1[39.1) для возбуждения спектра щелочных и щелочно-земельных элементов применялось ацетилено-воз-душное пламя. Ацетилен подавался из баллона, на котором были установлены редуктор с двумя манометрами (высокого и низкого давления) и вентиль точной регулировки. Воздух подавался из лабораторного компрессора КЗМО через буферную емкость, обеспечивающую постоянство скорости подачи. Воздух (перед поступлением в вентиль) проходит через ватный фильтр для поглощения механических примесей и масла из компрессора. Для каждой величины давления воздуха можно подобрать такой интервал давлений ацетилена, в пределах которого колебания давления почти не влияют на яркость пламени. Для фотоме-трирования выделяются участки пламени, расположенные на 20—25 мм выше светящегося зеленого конуса. [c.302]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Очень важное значение при комбинированных методах разделения приобретает очистка газа от СО2, Н2О, H2S, С2Н2. Углекислота и влага, выделяясь в твердом виде, забивают трубопроводы, сероводород вызывает коррозию, ацетилен же взрывоопасен, особенно при наличии медных частей в аппаратуре. [c.44]

    I Этиленовая фракция, идущая для производства этилового спирта, не должна содержать пропилена более 0,1%, так как в противном случае ухудшается качество этилового спирта (примесью изопропилового) и качество серной кислоты (примесью полимеров). Не допускается и наличие в этиленовой фракции ацетилена, так как во избежание коррозии аппаратура установки (дистилляционная часть) может иметь медную футеровку, а ацетилен способен образовывать взрывоопаоную ацетиленистую медь. [c.207]


Смотреть страницы где упоминается термин Ацетилен аппаратура: [c.11]    [c.63]    [c.349]    [c.108]    [c.241]    [c.252]    [c.121]    [c.37]    [c.334]    [c.99]    [c.180]    [c.316]    [c.513]   
Микро и полимикро методы органической химии (1960) -- [ c.335 , c.336 ]




ПОИСК







© 2024 chem21.info Реклама на сайте