Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны ионный транспорт

    Примером высокоспецифичного физико-химического метода может служить ионометрия, в основе которой лежит эффект установления воспроизводимого равновесного потенциала на границе раздела мембрана — исследуемый раствор, который пропорционален концентрации (активности) определенных ионов. Селективность (характеристичность в отношении заданных конов) обусловлена специфичностью (повышенной прочностью) соединений данного иона, существующих в мембране, и избирательностью ионного транспорта в фазе мембраны (механизма электрической проводимости через границу раздела фаз). [c.15]


    Существует несколько механизмов ионного транспорта. Согласно механизму подвижных переносчиков ионофор Т-, вызывающий селективную проводимость мембраны, образует на поверхности мембраны комплекс с ионом С+ С+4-Т Х [СТ]. Этот нейтральный комплекс диффундирует к противоположной стороне мембраны и диссоциирует, так что С+ переходит в водную фазу, а Т" под действием электрического поля возвращается обратно  [c.140]

    При ионном транспорте через мембраны можно выделить следующие основные стадии переноса (транспорта) ионов [2] 1) из обьема исходного раствора к мембране 2) через поверхностный слой 3) через активный (селективный) слой мембраны 4) в крупнопористом слое мембраны 5) в пористой подложке (если она имеется). [c.385]

    Теория мембранных потенциалов покоя для аксона разработана Гольдманом, Ходжкином, Хаксли и Катцем. Основное предположение этой теории состоит в том, что напряженность электрического поля внутри тонкой мембраны должна иметь постоянное значение, и ионный транспорт в мембране можно описывать уравнением Нернста — Планка. Однако этот подход не представляется реалистичным, поскольку ионы проходят сквозь мембрану через каналы, селективные для данных ионов. При переносе через канал молекулярных размеров трудно говорить о диффузии, ионы как бы перепрыгивают через мембрану, преодолевая соответствующий энергетический барьер. [c.234]

    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Биологические мембраны являются барьерами, которые отделяют содержимое клетки от внешней среды, они выполняют также роль разделительных перегородок между отдельными секциями клетки. Через мембраны происходит транспорт различных веществ и ионов, необходимых для жизнедеятельности клетки. Этот процесс носит избирательный характер. При этом различают пассивный перенос, когда поток веществ движется в соответствии с градиентом концентраций или электрохимических потенциалов, и активный транспорт веществ, осуществляемый за счет генерируемой в клетке энергии. [c.15]


    В биохим. исследованиях И. используют для регуляции ионного транспорта через мембраны, в химии-для экст- [c.266]

    Биоэнергетические процессы, приводящие к синтезу АТФ, к зарядке биологических аккумуляторов , протекают в мембранах митохондрий. В них локализованы и пространственно организованы молекулярные системы, ответственные за энергетику живых организмов. Синтез АТФ в митохондриях сопряжен с электронным и ионным транспортом и с механохимическими явлениями. Функции митохондриальных мембран весьма сложны и многообразны. Другой тип биоэнергетических сопрягающих мембран — мембраны хлоропластов растений, ответственные за фотосинтез,— рассматривается в гл. 14. У бактерий сопряжение реализуется в плазматических мембранах. [c.423]

    Прочие различия в системах ионного транспорта становятся очевидными при рассмотрении их ионной селективности, максимальной емкости и числа каналов на единицу поверхности мембраны (табл. 7.1). [c.132]

    На электронных микрофотографиях на внутренней стороне митохондриальной мембраны видны характерные частицы, со- единенные с ней маленькими жгутиками. После длительных дебатов о возможности появления артефактов при окрашивании препаратов в электронной микроскопии сейчас считают, что эти частицы не что иное, как молекулы АТРазы. Исследователей главным образом занимает вопрос какие молекулы и какие мо--лекулярные механизмы участвуют в ионном транспорте, синтезе и гидролизе АТР, и как все это связано с жгутиковыми частицами  [c.180]

    Они действуют как неконкурентные антагонисты, блокирующие ионный транспорт через постсинаптические мембраны и не конкурирующие с медиатором за участок связывания на рецепторе. [c.209]

    Какие характеристики липидного бислоя можно изучать, используя БЛМ как мембранную модель На рисунке 302 показана схема экспериментальной установки, обычно применяемой для проведения измерений на бислойных мембранах. Лучше всего эта модельная система подходит для измерения электрических характеристик липидного бислоя, таких, как электрическая емкость, проводимость, потенциал пробоя, мембранные потенциалы и др. Именно благодаря возможности проведения разнообразных электрических измерений БЛМ сыграли исключительно важную роль в изучении ионного транспорта через биологические мембраны. В таблице 25 сравниваются некоторые физические характеристики БЛМ и биологических мембран. [c.574]

    Ионный транспорт на стадиях 1, 4 и 5 лимитируется переносом в диффузионных слоях, граничащих с активным слоем мембраны. Определение профиля концентрации ионов в этих слоях сводится к решению системы уравнений конвективной электродиффузии ионов в поверхностном слое раствора смешанного электролита. Допустим, что свойства раствора не зависят от концентрации растворенных веществ и оиределяются их предельными значениями. [c.385]

    Толщину диффузионного слоя со стороны электрода определяли, измеряя микрометром толщину подложки (например,, ватмана) и мембраны (в которой крупнопористый слой составляет более 90%)- Учитывая, что селективные свойства н пористость крупнопористой части мембраны и ватмана близки, соответствующие стадии ионного транспорта через них объединили в одну, называемую стадией переноса иона через пористый слой. Его толщина в этих опытах составила 350 мкм. [c.121]

    Нервная система преобразует поступившие через органы чувств раздражения — физические (свет, звук,, температура, давление, прикосновение), химические (от веществ, находящихся в воздухе, пище или жидкостях внутренних сред организма) — в нервный импульс. В основе этих превращений лежат химические превращения биомолекул. Раздражающий стимул воспринимается высокоспецифическим белком-рецептором, находящимся в возбудимой мембране. В результате такого взаимодействия изменяются конформация белка, проницаемость мембраны, активность связанного с мембраной фермента, ионный транспорт через мембрану, что приводит к многократному усилению ответа на первоначальный стимул. Функциональные изменения рецептора обратимы. [c.53]

    Активный ионный транспорт в нервной клетке имеет множество функций поддерживает мембранный потенциал возбудимой мембраны (натрий-калиевый насос), регулирует внутриклеточную концентрацию Са + ( a +,Mg2+-ATPaзa) и обеспечивает клетку энергией (РгАТРаза, протонный насос). Натрий-калиевый насос является электрогенным — на каждые три иона На+, транспортируемых наружу, направляются внутрь два иона К" " таким образом, при каледом цикле из клетки забирается по одному положительному заряду. АТР поставляет энергию для обеспечения активного транспорта (против ионного градиента), т. е. осуществляет связь между передачей импульса и метаболизмом нервной клетки. Система ионного транспорта включает АТРазу и ионофор — сложные мембранные белки. Один из белковых компонентов подвергается промежуточному фосфорили-рованию с помощью АТР. Гликозид дигиталиса и уабаин (стро- [c.184]


    Благодаря своему строению экдизоны проявляют анаболический эффект, влияют на метаболизм углеводов, белков, нуклеиновых кислот, на процессы ионного транспорта через биологические мембраны. [c.293]

    Изучение мембранных явлений на живых организмах — чрезвычайно сложная экспериментальная задача. В 1962 г. П. Мюллер и сотрудники разработали методику приготовления бимолекулярных фое-фолипидных мембран, что предоставило возможность модельного исследования ионного транспорта через мембраны. Для приготовления искусственной мембраны каплю экстракта мозговых липидов в углеводородах наносят на отверстие в тефлоновом стаканчике (рис. 46, а). Искусственные мембраны имеют более простое строение, чем естественные (ср. рис. 45 и 46, б), но приближаются к последним по таким параметрам, как толщина, электрическая емкость, межфазное натяжение, проницаемость для воды и некоторых органических веществ. Однако электрическое сопротивление искусственных мембран на 4—5 порядков выше. Проводимость мембран увеличивают, добавляя ионофоры жирорастворимые кислоты (2,4-динитрофенол, дикумарол, пентахлорфе-нол и др.) или полипептиды (валиномицин, грамицидины А, В и С, ала-метицин и др.). Мембрана, модифицированная валиномицином, имеет сопротивление порядка 10 Ом/см , а ее проницаемость по К-" в 400 раз выше, чем по Ма+. На модифицированных моделях был изучен механизм селективной проницаемости мембран. В определенных условиях при добавлении белковых компонентов искусственная мембрана позволяет моделировать также свойство возбудимости. [c.140]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Устройство мембраны, показанное на рис. 10.2, таково, что белки как бы плавают в липидном море . Их молекулы погружены с двух сторон мембраны на разную глубину в двойной слой подвижных углеводородных хвостов липидов. Имеются белки, проходящие через всю мембрану. Значительная часть поверхности мембраны свободна от белков так, белки занимают 70 7о поверхности мембраны эритроцита и 80 7о поверхности мембраны мпкросомы. Транспорт малых ионов и молекул происходит по каналам в мембранах. В устройстве и функционировании каналов особенно существенна роль белков. Природа каналов— важная проблема физики мембран (см. 11.4). [c.338]

    Феноменологическая неравновесная термодинамика для пассивного ионного транспорта строится по аналогии с описание.м транспорта нейтральных молекул. Феноменологические коэффициенты также выражаются через коэффициенты трения. Ситуация здесь усложнена, так как число этих коэффициентов велико — для раствора Na l в воде их шесть. Расчеты упрощаются, если мембрана сильно заряжена, и поэтому концентрация фиксированных противоионов в мембране много больше концентрации нейтральной соли. [c.342]

    Белки можно включать в бислой либо прибавлением их к липидному раствору перед формированием мембраны, либо введением в уже сформировавшийся бислой посредством диффузии. Применение черных липидных мембран (bla k lipid membranes, BLM) оказалось особенно успешным для изучения низкомолекулярных пептидных ионофоров, таких, как антибиотики грамицидин и валиномицин. Кинетику их ионного транспорта удалось проанализировать детально было показано, что валиномицин — ионофор, а грамицидин, напротив, димеризуется, образуя в мембране поры. Этот метод настолько чувствителен, что позволил количественно изучать свойства единичных ионных каналов, их ионную селективность, максимальную проводимость и время жизни. [c.88]

    Вкратце рассмотрим a +.Mg + ATPaay мембраны саркоплазматического ретикулума, биохимические особенности которой подробно охарактеризованы. Молекула фермента состоит иэ одной полипептидной цепи (AI 100 000), возможно, это протеолипид. Частичное расщепление трипсином показало, что обе функции —гидролиз АТР и транспорт ионов — осуществляются на разных участках одной и той же полипептидной цепи. Фрагмент триптического расщепления с М 30 000 содержит участок, который, как и в Na+,K+-Ha o e, кратковременно фосфорилируется АТР другой фрагмент с М 20 000 может быть встроен в искусственную липидную мембрану с появлением селективной кальциевой проводимости. Возможно, что он представляет собой ионофор [9]. При этом, однако, не выяснен механизм сопряжения энергии гидролиза АТР с ионным транспортом. [c.179]

    Более полная информация о механизме транспорта Са + получена в ходе экспериментов по реконструкции высокоочищен-ная АТРаза успешно встроена в искусственные липидные везикулы, которые затем активно захватывают ионы кальция. В данном случае здесь, как и во всех экспериментах по реконструкции, главная цель состоит в воспроизведении биологических условий путем использования биохимически охарактеризованных компонентов и, следовательно, постепенного воссоздания молекулярного процесса. Исключая и добавляя отдельные части биологической системы, стало возможным идентифицировать компоненты биологической мембраны, обусловливающие данную функцию. Ракер и др. [10] показали, что протеолипид, ассоциированный с белковой молекулой 100 ООО), является необходимым участником ионного транспорта, но не гидролиза АТР,, [c.179]

    Рпс. 7.12, Электронная микрофотография высокого разрешения бактериородопсина — светозависимого протонного насоса галофильны.х бактерий. Во многих отношениях эта структура подходит для использования в качестве модели ионного транспорта через другие (нейрональные) мембраны. Каждая молекула состоит из семи спиральных полипептидных цепей, пронизывающих мембрану (б). На карте электронной плотности (а) видно, что три молекулы ассоциированы в единое структурное образование, в котором внутреннее кольцо включает девять и внешнее — двенадцать полипептидных спиралей. В центре расположены липиды. Каждая молекула бактериородопсина является активным протонным насосом. (Воспроизводится с разрешения R. Henderson и M Millan Journals Ltd.) [15]. [c.183]

    После того как Б. Прессманом было обнаружено индукционное влияние грамицидина А иа ионный транспорт (К, Na , Н и др.) через биологические мембраны. С. Хладкн и Д. Хейдон в 1970 г. однозначно установили, что антибиотик функционирует в мембране по принципу канала. [c.599]

    Таким способом нонактин обеспечивает транспорт через мембраны ионов калия, а монактин помогает и ионам калия, и ионам натрия. [c.115]

    В. Т. Ивановым установил (1969), что депсипептиды являются химическим инструментом изучения ионного транспорта через мембра- [c.569]

    Ионный транспорт на стадиях 1, 4 и 5 лимитируется переносом в диффузионных слоях, граничащих с активным слоем JVleмбpaны. Определение профиля концентрации иона в указанных слоях сводится к решению системы уравнений конвектив-шой электродиффузии ионов в поверхностном слое раствора смешанного электролита. Допустим, что свойства раствора не зависят от концентрации растворенных веществ и определяются их предельными значениями. Этот подход не совсем корректен, но в отдельных случаях позволяет получить общую картину процесса сравнительно простым путем [199]. По этой же причине вместо активностей компонентов в растворе будем использовать их концентрации. Будем считать, что диффузионный слой имеет конечные размеры, а конвективный поток через этот слой направлен по нормали к его поверхности и приблизительно равен проницаемости мембраны по воде (м/с). Постановка такой задачи описана в работе [199] там же приведены уравнения, которые используют для описания профиля изменения концентрации иона в диффузионном слое  [c.120]

    Особенность диссоциации воды при разделении растворов электролитов обратным осмосом или электроосмофильтрацией заставляет во многом пересмотреть существующие модели ионного транспорта через мембраны. Очевидно, указанное явление необходимо учитывать при теоретическом описании переноса ионов в процессе электроосмофильтрации. В случае же обратного осмоса в большинстве моделей ионного транспорта через мембраны используется принцип термодинамического равновесия раствора электролита у поверхности мембраны и в поровом пространстве ее активного слоя [203—206]. Явление диссоциации воды на границе разделяемого раствора и мембраны в данном случае исключает правомерность указанного подхода, так как природа разложения воды обусловливает отклонение состава раствора, примыкающего к этой границе, от термодинамически равновесного. [c.123]

    Итак, рассмотрены механизм переноса ионов через мембрану при обратном осмосе и электроосмофильтрации на всех транспортных стадиях. Для определения ионных потоков в мембрану необходимо рассчитать массопередачу на стадии переноса ионов к поверхности мембраны со стороны исходного раствора и на стадии переноса ионов через границу разделяемого раствора и мембраны, а затем состыковать результаты расчетов с учетом граничных условий на поверхности мембраны. С принятыми нами допущениями получить решение этой задачи в аналитическом виде удается только в случае разделения бинарного раствора электролитов обратным осмосом. При электроосмофильтрации процесс переноса ионов через мембрану еще более осложняется обнаруженным и пока не изученным явлением интенсивного разложения воды на границе разделяемого раствора и мембраны. Тем не менее предложенное описание ионного транспорта и методы расчета факторов, влияющих на разделение ионов, по-видимому, позволят разработать методику количественного определения ионных потоков через мембрану. [c.129]

    Предполагают, что затруднение в переносе анионов возникает на межфазной границе [158]. С равным основанием, однако, можно предположить, что лимитирующей стадией является перенос аниона во внутреннем объеме гидрофобной органической фазы. В работе [5 , с. 64] Стефановой предложен метод концентрационных цепей для выявления лимитирующей стадии ионного транспорта. По предварительным данным для мембраны на основе валиномицина в дибутилфталате второе предположение является более вероятн - м. [c.79]


Смотреть страницы где упоминается термин Мембраны ионный транспорт: [c.159]    [c.68]    [c.310]    [c.293]    [c.354]    [c.27]    [c.139]    [c.163]    [c.184]    [c.596]    [c.77]    [c.204]    [c.370]    [c.274]   
Жизнь зеленого растения (1983) -- [ c.221 , c.230 , c.234 , c.235 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Активный транспорт ионов через мембраны

Иониты мембраны

Ионный транспорт через жидкие мембраны

МАКРОЛИДЫ. ТРАНСПОРТ ИОНОВ ЧЕРЕЗ КЛЕТОЧНЫЕ МЕМБРАНЫ

Мембрана транспорт ионов и молекул

Поглощение минеральных веществ из почвы и транспорт ионов через клеточные мембраны

Транспорт веществ и ионов через мембраны

Транспорт веществ и ионов через мембраны активный

Транспорт веществ и ионов через мембраны ионные насосы

Транспорт веществ и ионов через мембраны каналы, модели

Транспорт ионов через митохондриальные мембраны

Транспорт ионов через сопрягающие мембраны



© 2025 chem21.info Реклама на сайте