Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие термодинамическое в растворах полимеров

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Пусть теперь при понижении температуры раствор разделится на две фазы — концентрированную (осадок) и разбавленную (раствор) и установится фазовое равновесие. Проведя обычное термодинамическое рассмотрение фазового равновесия в растворах полимеров [157, с. 497—518, 559], после несложных преобразований, получим [153]  [c.153]

    Кинетические свойства системы обусловлены подвижностью молекул или атомов. В растворах полимеров присутствуют большие макромолекулы, время релаксации которых очень велико. Поэтому все процессы в истинных растворах полимеров происходят очень медленно, что делает их похожими па коллоидные системы. Но в отличие от коллоидных систем, малая скорость процессов, происходящих в истинных растворах полимеров, не связана с неравновесностью системы. Истинные растворы полимеров — это термодинамически устойчивые равновесные системы. Состояние равновесия устанавливается в них очень медленно вследствие очень больших времен релаксации цепных молекул, причем время релаксации тем больше, че.м винте концентрация полимера в растворе. Рассмотрим это явление подробнее. [c.331]

    Поскольку подвижность молекул растворителя намного превышает подвижность длинных макромолекул, то на первой стадии растворения происходит проникновение растворителя вглубь полимера, сопровождающееся значительным увеличением его объема. Однако полимер, несмотря на многократное изменение объема, сохраняет свою форму. Это явление, известное под названием набухания, представляет собой первую стадию растворения. Если низкомолекулярное вещество, в котором набухает полимер, лишь ограниченно растворимо в полимере, то такое набухшее состояние может быть термодинамически равновесным, т. е. набухший полимер окажется через некоторое время в равновесии с раствором полимера, причем этот раствор обычно обладает достаточной подвижностью. Если же растворимость низкомолекулярного вещества в полимере неограниченная, то после набухания постепенно происходит дальнейшее раз-движение пачек макромолекул и самих цепных молекул и их диффузия в растворитель с образованием однородного истинного раствора полимера. [c.278]

    В действительности растворы полимеров равновесны, обратимы, их свойства не изменяются со временем. Однако надо иметь в виду одно обстоятельство, которое может стать источником многих ошибок в экспериментальных исследованиях растворов полимеров. Равновесие в этих системах наступает очень медленно. Чтобы получить равновесный, не изменяющий своего состава и свойств раствор, надо выдержать его ири данной температуре длительное время — несколько суток, а иногда даже несколько месяцев. Это связано с очень малой скоростью диффузии молекул полимеров. Но медленное течение всех процессов в растворах высокомолекулярных веществ отнюдь не противоречит факту их термодинамической устойчивости, их равновесности. Равновесие не зависит от того, в результате каких процессов оно достигается. Если по истечении определенного времени установилось истинное состояние равновесия и раствор не изменяет более ни своего состава, ни своих свойств, то такой раствор равновесен независимо от того, как велик был этот промежуток времени. [c.202]


    Как было указано выше, растворы полимеров образуются самопроизвольно при контакте растворяемого вещества с растворителем. Благодаря большим размерам молекул высокомолекулярных соединений процесс распределения макромолекул в объеме растворителя протекает сравнительно медленно и медленно достигается состояние термодинамического равновесия. В равновесном состоянии растворы высокомолекулярных веществ агрегативно устойчивы, как и истинные растворы низкомолекулярных веществ. [c.258]

    Рассматривая повторяющееся звено просто как набор ангармонических осцилляторов (упругая подсистема), мы не учитываем того факта, что в полимерах имеется свободный объем. Вследствие этого атомы, образующие осцилляторы, могут менять свое положение в пространстве (переходить из одного состояния равновесия в другое, энергетически не эквивалентное первому). Это явление, известное под названием поворотной изомерии, оказывает существенное влияние на термодинамические (и кинетические) свойства полимеров, особенно когда они находятся в аморфном состоянии. Изучению этого явления в растворах полимеров и в полимерах, находящихся в высокоэластическом состоянии, посвящены работы [14, 15]. В данном разделе на основании простой модели поворотного изомера учтем влияние положения равновесия на термодинамические свойства полимеров в аддитивной схеме. Для простоты будем счи- [c.43]

    Как было показано Панковым и сотр. [25], равновесия в системе аморфный полимер — растворитель могут быть охарактеризованы графически диаграммами состояний в координатах состав — температура, вполне аналогичными диаграммам состояний низкомолекулярных бинарных систем, образованных ограниченно смешивающимися жидкостями. При температурах выше верхней критической температуры смешения или ниже нижней критической температуры смешения термодинамически устойчивы гомогенные растворы полимера любой концентрации. [c.58]

    Применимость правила фаз к растворам белков была показана и ранее Зеренсеном и Мак Бэном [5—7]. Однако до работ В. А. Каргина никто так четко не ставил вопрос о взаимосвязи факта применимости этого основного закона гетерогенного равновесия к растворам полимеров с их термодинамической устойчивостью. [c.195]

    Френкель и сотр. [21] обобщают работы по фазовым равновесиям в системе полимер—растворитель и дают термодинамический критерий концентрированных и разбавленных растворов. Было предложено рассматривать фазовые диаграммы в двух приближениях. Первое равновесное приближение позволяет лишь в общих чертах предсказать характер структуры на любом участке системы. Такое рассмотрение основано на полной аналогии между простыми бинарными смесями и растворами полимеров в низкомолекулярных жидкостях. Сущность аналогии заключается в том, что хотя и принимается во внимание принципиальное различие между свободными энергиями смешения простых жидкостей и систем, содержащих полимеры, но на диаграмме это различие выражается лишь в резкой асимметрии бинодалей. [c.64]

    Адсорбция смеси полярного с неполярным полимером на границе раздела сажа Графой — жидкость изучена в работе [150]. Исследование адсорбции проводилось как из смеси растворов полимеров, так и путем добавления раствора одного полимера в адсорбционную систему, содержащую другой полимер и доведенную до равновесия. В последнем случае можно следить за вытеснением молекул одного полимера молекулами другого. Использовались следующие полимеры неполярный полистирол, меченный (ПСТ), полярные поливинилацетат (ПВА) и полиметилметакрилат (ПММА). В качестве растворителей применялись толуол — термодинамически хороший растворитель для полистирола и бутанон-2 — плохой растворитель для этого полимера. [c.76]

    Данные изотермы были выведены при условии термодинамического равновесия, однако возможен и кинетический вывод через скорости сорбции и десорбции [98]. Пусть поверхность содержит Ns адсорбционных центров, способных связать по одному сегменту цепи. В растворе полимера содержится N молекул из t сегментов (из которых V сегментов при v а t связывается с поверхностью) и Л/о молекул растворителя. Доля поверхности, занятой полимерными сегментами и молекулами растворителя о, определится как [c.113]

    Результаты, изложенные во всех этих работах, являлись неоспоримым доказательством термодинамической устойчивости растворов целлюлозы. Однако представления о коллоидной природе растворов полимеров в конце 30-х годов были еще очень сильны, и В. А. Каргин ставит вопрос о природе растворов желатины, которые обычно приводили в качестве классического примера мицеллярной, термодинамически неустойчивой системы. В. А. Каргин высказал предположение, что кажущаяся необратимость водных растворов желатины связана с наличием в ней большого количества неорганических солей, тормозящих процесс достижения равновесия. Действительно, в работе с А. А. Тагер [8] было показано, что растворы желатины, очищенные с помощью высоковольтного электродиализа, ведут себя как обратимые термодинамически устойчивые системы и равновесие с них устанавливается быстро. [c.195]


    Концентраций мономера в полибутадиеновой и полистирольной фазах влияет на кинетику сополимеризации в них и молекулярные параметры продуктов реакции, что в свою очередь отражается на структуре образующегося гетерогенного материала и его физикомеханических свойствах. На основании термодинамической теории растворов полимеров Флори — Хаггинса проведен расчет фазового состава модельной системы для случая истинного термодинамического равновесия при условии, что растворитель — стирол является хорошим. для обоих полимеров (т. е. когда < 0,5) [283, с. 15]. [c.161]

    Сущность метода дробного осаждения сводится к выделению из раствора полимера более высокомолекулярной части нарушением термодинамического равновесия системы. Это может быть достигнуто ступенчатым изменением состава растворителя (добавка осадителя) или концентрации раствора (испарение части растворителя при постоянной температуре), а также понижением температуры. Однородность фракций по молекулярному весу определяется концентрацией используемого раствора полимера чем меньше концентрация, тем уже выделяемая фракция. [c.177]

    В этом и последующих разделах будут рассмотрены общие положения теории фракционирования, основанной на различном распределении полимерных молекул между двумя фазами. Подобное распределение мо кет быть связано с различием молекулярных весов или строения растворенных молекул полимера. Прежде всего рассмотрим термодинамическое равновесие в двухфазной жидкой системе, содержащей полидисперсный полимер и один или два растворителя (один из них хороший растворитель, другой — плохой). Раствор полимера, состоящий вначале из одной фазы, может разделяться [c.10]

    Термодинамические, основанные на термодинамических законах разбавленных растворов полимеров, в которых система растворитель — полимер находится в статическом равновесии. Они сводятся к определению мольной доли вещества в растворе известной концентрации. Сюда относится определение молекулярного веса но  [c.58]

    Несмотря на особенности растворения ВМС, их растворы истинные, термодинамически устойчивые системы. В этом заключается принципиальное отличие их от коллоидных систем, к которым долгое время относили растворы полимеров под названием лиофильных золей. Основанием для этого служили очень малая скорость диффузии, неспособность проходить через полупроницаемые перегородки, способность давать слабый, но отчетливый эффект Тиндаля, старение — изменчивость во времени, а следовательно, отсутствие равновесия. Но отличительными признаками коллоидных систем являются гетерогенность, высокоразвитая поверхность раздела между дисперсионной средой и дисперсной фазой, отсюда термодинамическая неустойчивость, неспособность существовать без стабилизатора, легкая разрушаемость под воздействием различных факторов (коагуляция). [c.258]

    Кристаллическое равновесие. Полимер выделяется в виде кристаллической фазы той или иной модификации, причем эта фаза находится в равновесии с насыщенным раствором полимера. Сюда относятся случаи кристаллизации обычного неполярного полимера в термодинамически плохом растворителе (рис. 3.3, а), для которых характерно сосуществование в широкой области температур кристаллической фазы полимера с низкоконцентрированным по полимеру раствором. К этому типу относятся также системы на основе полимеров с полярными звеньями и группами в цепи, которые энергично взаимодействуют с полярными растворителями с образованием кристаллосольватов (рис. 3.3, б). [c.82]

    Приведены данные о физических и термодинамических свойствах свыше 1800 веществ, сведения по химическому равновесию, свойствам растворов, электрохимии, строению веществ и т.д. В 3-е издание (2-е изд. — 1978 г.) включены новые материалы, в частности основы современной номенклатуры, характеристика природных полимеров, сведения по лабораторной технике и др. Ряд данных уточнен и обновлен. [c.39]

    Различие между полимерными системами и материалами проявляются не только в характере фазовой структуры, информации о фазовом равновесии, но и в понимании природы переходных слоев [380, 381]. Для систем под переходным слоем следует понимать межфазные слои (границы), возникающие на границе раздела двух приведенных в контакт растворов полимеров, находящихся в условиях термодинамического равновесия, [c.251]

    Для виниловых полимеров непременным условием кристаллизации является высокая степень стереорегулярности. Большинство свойств растворов довольно нечувствительно к разнице в микротактичности . Даже несмотря на то, что при дальнейшем обсуждении спектроскопии ядерного магнитного резонанса растворов полимеров будет показано, что в некоторых случаях этот метод наиболее эффективный из имеющихся в настоящее время методов количественной оценки микротактичности, мы должны помнить о том, что наличие стереорегулярной структуры само по себе не служит доказательством способности данного полимера к кристаллизации. Эти примеры приводятся лишь для того, чтобы показать типичные пределы информации, которая может быть получена в результате исследования макромолекул в очень разбавленном растворе. Основная цель таких исследований — определение свойств изолированной макромолекулы. Поэтому не следует ожидать, чтобы на их основе были предсказаны явления, которые в основном определяются аномально высокой вязкостью полимеров в массе, что часто препятствует достижению состояния термодинамического равновесия системы. Не следует также ожидать, чтобы эти исследования позволили выявить геометрические возможности упаковки ценных молекул в кристаллической решетке, что может приводить к большим различиям в свойствах кристаллических и аморфных полимеров. [c.35]

    Фазовые равновесия. В растворе полимера, как и во всякой однофазной молекулярно-дисперсной системе, всегда имеют место гомофазные флуктуации концентрации. В определенных условиях могут возникнуть гетерофазные флуктуации, которые являются зародыщами новой фазы и при небольшом изменении условий превращаются в новую пространственно протяженную фазу. В результате однофазный раствор разделяется на две фазы, одна из которых представляет собой более разбавленный, а другая — более концентрированный раствор по сравнению с исходным. Такие фазовые превращения характеризуются соответствующими изменениями термодинамических функций. [c.88]

    Наглядно это можно было бы представить себе как размазывание бинодалей и спинодалей, в результате которого в казалось бы однофазной области могут существовать, и притом в течение длительного времени, гетерофазные флуктуации и даже макрофазы (неравновесные студни). При всей наглядности такое представление с чисто термодинамической точки зрения некорректно, если не выходить за рамки равновесной термодинамики обратимых процессов. Никакого парадокса в существовании неравновесных образований в равновесной области н самом деле нет просто достижение равновесия требует льшого времени — иногда очень большого. Об этом следует помнить при анализе фазовых равновесий в растворах полимеров. Кроме того, не следует упускать из виду и того, что разделение на фазы овеем не обязательно отвечает переходу в новое фазовое состояние. [c.134]

    Основы представлений о фазовом равновесии в растворах полимеров были заложены работами Папкова, Каргина и Роговина [10—13], исследовавших растворы ацетата целлюлозы. Ими было показано, что растворы полимеров являются системами, подчиняющимися правилу фаз таким образом опровергалась точка зрения, согласно которой растворы полимеров рассматривались как коллоидные системы с сольватированной поверхностью (лиофиль-ные коллоиды). Это положение, подтвержденное впоследствии еще рядом работ [14—17], стало основополагающим для термодинамической теории растворов полимеров. Некоторые исторические аспекты развития представлений о растворах полимеров изложены в фундаментальной монографии Папкова [18]. [c.8]

    При анионной полимеризации а-метилстирола устанавливается (можно наблюдать) термодинамическое равновесие (зависящее от температуры) между мономером и полимером. Интенсивно-зеленая окраска раствора инициатора при добавлении мономера переходит в красную за счет образования карбанионов. При низкой температуре (между —40 и —70°С) образуются живущие цепи, и раствор становится вязким. При нагревании раствора полимер депо-лимеризуется, а при охлаждении вновь полимеризуется. Температура, при которой равновесие сдвинуто полностью в сторону мономера, называется предельной температурой [14], для а-метилстирола она составляет 60 °С, в то время как для большинства остальных мономеров с двойной С = С-связью предельная температура лежит выше 250 °С. Предельная температура некоторых мономеров, полимеризующихся по С = 0-связи, и ряда циклических мономеров также относительна низка например, для формальдегида или триоксана она равна 126°С, для тетрагидрофурана 85 °С. Несмотря на свою термодинамическую неустойчивость шоли-а-метилсти-рол может быть выделен после обрыва живущих цепей, поскольку блокирование концов цепей обрывом на молекулах воды или двуокиси углерода кинетически предотвращает деполимеризацию. Только при температурах выше 200 °С термическое разложение полимера протекает с высокими скоростями (см. опыт 5-14)- [c.143]

    Попытка изложить физико-химические основы переработки полпмеров через растворы предпрпнята в этой книге с учетом того, что в настоящее время достаточно прочно установилось представление о термодинамической равновесности растворов полимеров и о подчиняе-мости их правилу фаз. Одной из основных специфических черт полимеров — малой кинетической подвижностью макромолекул объясняется тот факт, что при переходе от раствора к чистому полимеру в реальном изделии почти никогда не успевает установиться равновесие, отвечающее заданным параметрам состояния. Это обстоятельство заставляет, с одной стороны, рассматривать приближение к равновесному состоянию, определяемому законами термодинамики, как основное иаправле- [c.13]

    Если суммировать в кратком виде все сказанное выше о современном состоянии проблемы растворения полимеров и выделения их из растворов, то оно может быть охарактеризовано следующим образом. Работами [ослсднпх двух-трех десятилетий показано, что растворы полимеров не являются системами, для которых типичны принципиально иные закономерности, чем для низ-комолекуляриых веществ, как это принималось ранее, когда некоторые особенности высокополимеров, и в первую очередь малые скорости диффузионных процессов, считали главной характеристикой этих веществ и ио указанной причине относили системы полимер — растворитель к термодинамически неравновесным коллоидным системам. В действительности же оказалось, что правильнее подходить к классификации полимерных систем с учетом их равновесных состояний, а ие только с точки зрения оцспки кинетических особенностей процесса достижения равновесия. [c.24]

    В настоящее время представления о растворах полимеров как о беспорядочно перепутанных макромолекулах устарели. По современным данным, структура растворов "полимеров зависит от наличия ассоциатов или агрегатов с той или иной степенью упорядоченности. Характер структуры может быть флуктуацион-ным и нефлуктуационным. Реализация той или иной структуры определяется термодинамическими параметрами температурой, концентрацией раствора и качеством растворителя. При низких концентрациях и повышенной температуре образовавшиеся ассоциаты находятся в равновесии с макромолекулами в растворе. При повышении концентрации, понижении температуры равновесие сдвигается в сторону ассоциации. В результате образуются необратимые агрегаты, которые являются зародышами новой фазы дальнейшее ухудшение термодинамического сродства растворителя к полимеру (или повышение концентрации, или снижение температуры) приводит к фазовому расслоению. [c.151]

    Однако принципиальное отнесение растворов высокомолекулярных веществ к термодинамически устойчивым равновесным системам не означает, что всегда, когда мы имеем дело с раствором высокополиме-ра, мы располагаем равновесной системой. Практически это условие далеко не всегда осуществляется, в виду того, что в растворах полимеров достин ение равновесия по ряду причин может быть сильно замедленным (в приведенных выше опытах равновесие достигалось в течение ряда недель или месяцев). В этом отношении растворы высокополимеров существенно отличаются от истинных растворов низкомолекулярных веществ, которые (за исключением пересыщенных растворов) действительно всегда находятся в равновесном состоянии. Напротив, в растворах полимеров изменение взаимного расположения длинных цепных, иногда перепутанных, макромолекул не может происходить быстро кроме того, взаимодействие длинных цепей может сильно измениться уже от образования нескольких связей между ними, для чего достаточно крайне небольшого по весу количества солей или других примесей в растворе. Наличие в полимере молекул различных размеров (полидисперсности), различающихся по своей растворимости, диффузии и пр.,затруд- [c.171]

    Первые работы по применению правила фаз к растворам полимеров принадлежат Зеренсену и Мак-Бену [11], которые изучали процессы высаливания белков и желатины из водных растворов солями Ыа2304, (NH4)2S04, КНОз, КаКОз и т.д. Зная число компонентов и число фаз, они рассчитывали по уравнению (10.3) число степеней свободы для исследованных систем. На основании этого был сделан вывод, что растворы желатины термодинамически устойчивы в том смысле, в каком устойчивы кристаллы или растворы сахара и соли . Несмотря на наличие таких указаний, растворы желатины, так же как и других полимеров, очень долго считались коллоидными, агрегативно и термодинамически неустойчивыми системами. Такие представления, однако, впоследствии были опровергнуты и было показано, что самопроизвольно образующиеся растворы полимеров являются истинными растворами. Большую роль в этом сыграли работы Каргина, Роговина и Папкова [12], которые получили первые диаграммы состояния полимер— растворитель. Они обратили внимание на то, что все точки на кривой взаимного смешения получены в равновесных условиях, следовательно, состояние системы не зависит от пути достижения равновесия. Поэтому применимость правила фаз является критерием обратимости и термодинамической устойчивости системы полимер — растворитель. [c.282]

    Самопроизвольно образующиеся растворы полимеров — это истинные растворы, имеющие все признаки истинных растворов, главным из которых является термодинамическая устойчивость, или равновесность, независимость состояния равновесия от пути его достижения. Это — основной термодинамический критерий истинного раствора, и это отнюдь не значит, что все растворенное вещество диспергировано до молекул. Так бывает только при бесконечном разбавлении. В реальных жидкостях или истинных растворах в результате взаимодействия между молекулами образуются надмолекулярные структуры рои, ассоциаты, сиботакти-ческие группы. Бесструктурных жидкостей и растворов не существует, это и.цеализированное понятие, применимое только к идеальным систел ам, и все отклонения от идеальности связаны со структурообразованием. [c.80]

    Термодинамическое состояние раствора полимера можно описать с помощью свободной энергии смешения АС. Раствор неустойчив и разделяется на две или большее число фаз в том случае, если АС немонотонно зависит от составов. Рассмотрим двухфазную систему, состоящую из п компонентов 1, 2,. ... В условиях термодинамического равновесия химический потенг циал смешения -го компонента, АС, = д АС) дщ, должен быть одинаковым и в фазе I и в фазе II. [c.11]

    Поли.меры способны растворяться в низкомолекулярных веществах. В образующихся растворах по достижении термодинамического равновесия макромолекулы полимера перемешаны с. молекулами растворителя так же, как в обычных низкомолекулярных растворах. Однако большие размеры макромолекул вносят ряд особенностей в свойства растворов и видоизменяют процесс растворения. Вс 1едствие наличия в растворах больших частиц такие растворы приобретают некоторые свойства. характерные дли коллоидных растворов (прежде всего, неспособность проходить через мембраны). При этом следует отметить, что в неравновесных условиях растворы полимеров могут в большой степени приближаться к растворам лиофобных коллоидов, а при диспергировании в нерастворяющей среде ничем не отличаются от них (такими коллоидными раствора.ми являются, например, латексы). Здесь будут рассмотрены только процессы истинного растворения полимеров и свойстза получаемых растворов. [c.206]

    Термодинамическое равновесие системы полимер — растворитель отличается от классических равновесий типа низкомолекулярная жидкость — пар тем, что при повышении концентрации полимера давление насыщенных паров растворителя над раствором полимера уменьшается, а температура кипения растворителя при Р = onst повышается (рис. 3.7) [62]. [c.127]

    Таким образом, из уравнений (4.44) следует, что коэффициент Р зависит от тепловой подвижности молекул в растворе полимера ( >1 ) и термодинамической неидеальности системы, связанной в свою очередь с состоянием компонентов в растворе полимера. Это, естественно, требует для корректного анализа результатов по проницаемости и селективности смесей получение количественной информации о й 1,(рИ аг в трехкомпонентной системе растворитель — растворитель — полимер. Такие данные, как правило, отсутствуют в оригинальной и справочной литературе. Решение подобных задач связано с необходимостью использования для исследований не отдельного интегрального метода — проницаемости, а совокупности методов, которые позволили бы определить и состав растворов полимера, находящихся в равновесии со смесью растворителей, и активность диффузантов, и коэффициенты О. В этом плане заслуживает внимания применение метода МНПВО ИК-спектроскопии для изучения диффузии многокомпонентных сред через полимерные объекты [220]. Как показали работы [237, 238], данный метод позволяет оценить парциальные коэффициенты диффузии и рас- [c.140]

    Однако принципиальное отнесение растворов высокомолекулярных веществ к термодинамически устойчивым равновесным системам не означает, что всегда, когда мы имеем дело с растворолс вы-сокополимера, мы располагаем равновесной системой. Практически это условие далеко не всегда осуществляется ввиду того, что в растворах полимеров достижение равновесия по ряду причин может быть сильно замедленным (в приведенных выше опытах равновесие достигалось в течение ряда недель или месяцев). В этом отношении растворы высокополимеров существенно отличаются от истинных растворов низкомолекулярных веществ, которые, за исключением пересыщенных растворов, действительно всегда находятся в равновесном состоянии. Напротив, в растворах полимеров изменение взаимного расположения длинных цепных, иногда перепутанных, макромолекул не может происходить быстро взаимодействие длинных цепей может сильно измениться уже от образования нескольких связей между ними, для чего достаточно крайне небольшого по весу количества солей или других примесей в растворе. При работе с разбавленными растворами высокоочищенных фракционированных (моподиснерсиых) полимеров действие перечисленных факторов ослабляется и состояние термодинамического равновесия легче достигается, поэтому в научной работе обычно необходимо специально обеспечивать эти условия. Однако при работе с концентрированными растворами, особенно в производственных условиях (резиновые клеи, прядильные растворы целлюлозы и ее эфиров, концентрированные растворы желатины и др.), следует учитывать, что такие растворы не находятся в состоянии термодинамического равновесия и могут достигать его лишь спустя длительное время. Тем не менее эти особенности кинетики процессов в растворах высокополимеров, несмотря на их практическое значение, не изменяют принципиальной характеристики природы стабильности этих растворов, как термодинамически устойчивых обратимых истинных растворов. Эта характеристика, как указывалось, резко отличает растворы высокомолекулярных веществ от лиофобных коллоидных систем. Она означает также подчинение растворов высокомолекулярных веществ основному уравнению (XVIII, 1). [c.253]


Смотреть страницы где упоминается термин Равновесие термодинамическое в растворах полимеров: [c.377]    [c.329]    [c.331]    [c.309]    [c.148]    [c.203]    [c.82]    [c.7]   
Коллоидная химия (1959) -- [ c.171 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры равновесию

Равновесие в растворах

Равновесие термодинамическое

Растворы полимеров

равновесие в растворах полимеров



© 2025 chem21.info Реклама на сайте