Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетка типы делений

    У актиномицетов споры являются покоящимися клетками и одновременно репродуктивными структурами. По типу образования они делятся на две группы — эндогенные и экзогенные. Эндогенное образование спор внутри цитоплазмы материнской гифы, обнаруженное у представителей родов Thermoa tinomy es и A tinobifida, протекает аналогично описанному выще. У больщинства актиномицетов споры формируются экзогенно путем деления гифы перегородками на участки, каждый из которых представляет собой будущую спору. Экзоспоры большинства актиномицетов не содержат каких-либо дополнительных внутренних структур помимо тех, которые наблюдаются в вегетативной клетке. Стенка споры обычно значительно толще, чем стенка гифы, и в ней можно различить несколько слоев разной электронной плотности. Часто клеточная стенка окружена дополнительными наружными покровами. [c.73]


    Результатом деления выросшей микробной клетки типа М У является образование двух дочерних клеток типа У , что приводит к возрастанию общей численности популяции. [c.318]

    Для объяснения того факта, что во многих случаях смерть клетки наступает во время или после деления, мы должны обратиться к такому действию излучения, которое было бы летальным в момент деления или после него, но не вызвало бы гибели клетки до деления. Этим условиям, по-видимому, удовлетворяют генетические изменения или изменения хромосом, и потому мы переходим к рассмотрению этих типов летального действия излучений. [c.235]

    Важнейшими признаками, отличающими эукариотическую клетку от прокариотической, являются структурная организация ядерного материала и способ его деления. Клетки эукариотов имеют обособленное ядро, отделенное от цитоплазмы мембраной. Наследственная информация заключена в хромосомах, содержащих дезоксирибонуклеиновую кислоту (ДНК) и белки особого типа. Деление ядра прй размножении клеток происходит в результате сложного процесса — митоза. [c.30]

    Иной цели служит процесс образования половых клеток (гамет, т. е. яйцеклеток или сперматозоидов), который происходит при другом типе деления. Этот путь деления изображен на рис. 1.6. В процессе мейоза образуются клетки, содержащие гаплоидное число (и) хромосом. Этот процесс включает в себя два последовательных деления. И в этом случае хромосомы сначала удваиваются, так что клетка приступает к делению в состоянии 4и. [c.11]

    Иммуноглобулины находятся также на поверхности В-лимфоцитов. Связывание специфических антигенов с этими поверхностными антителами заставляет В-клетки размножаться и продуцировать значительные количества антител в ответ на инфекцию. Для образования молекул IgG необходимы также Т-клетки (существует несколько их типов) в отсутствие последних образуются только молекулы IgM. Считают, что некоторые Т-клетки также распознают антигены, после чего они стимулируют деление В-клеток. Перед тем как лимфоциты начинают делиться, на их поверхности происходят интересные процессы. Если пометить лимфоцит флуоресцирующими антигенами, то видно, что комплексы антитело — антиген сначала располагаются на поверхности клетки относительно равномерно, но вскоре антигены начинают агрега-ровать, образуя пятна , которые затем мигрируют к одному из краев клетки, где в конце концов из них формируется шапочка . Через некоторое время после зтого содержимое шапочки проникает внутрь лимфоцита. [c.386]

    Согласно имеющимся наблюдениям дифференцированные митохондрии могут активно делиться двумя различными способами, причем во всех клетках определенной ткани деление митохондрий может осуществляться одним из этих способов. Чаще всего деление происходит путем образования перегородок, подобных кристам наружная мембрана в образовании этих перегородок не участвует. Попарно возникшие перегородки постепенно смыкаются, деля митохондрию на отсеки. Далее митохондрии распадаются, в результате чего происходит увеличение их числа подобный тип деления можно наблюдать в клетках меристем атической ткани. При другом типе деления наблюдается сильное сужение центральной части митохондрии вместе с наружным слоем мембраны до полного разделения ее на части. [c.53]


    Для получения полиплоидов в большинстве случаев воздействуют на соматические ткани интенсивно делящихся клеток растений. При этом возникает химерная ткань, состоящая из клеток различной плоидности наряду с диплоидными (2х) образуются тетраплоидные (4х) клетки, а также клетки типа 8х, 16л и т. д. Колхицин подавляет в молодых клетках проростков функции веретена клеточного деления, обеспечивающего расхождение хромосом к полюсам. Такие митозы, заторможенные инактивацией веретена, называются /(-митозами. Но рост клетки и деление хромосом при этом не прекращаются, клеточная же перегородка не образуется, и возникает клетка с увеличенным вдвое числом хромосом. [c.251]

    При рассмотрении двух типов делений клетки не случайно акцентировалось внимание на поведении структур ядра, прежде всего хромосом. В настоящее время только для хромосом, каждая из которых в гаплоидном наборе уникальна, известен механизм точного распределения в митозе и мейозе. Для других клеточных органелл, таких, как митохондрии или пластиды, представленных в клетке ю множестве, точный механизм распределения не известен. [c.74]

    Сложность иммунного ответа связана отчасти с тем, что другие клетки, в особенности Т-лимфоциты и макрофаги, изменяют реакцию В-клеток на антиген. В отсутствие активирующего действия антигена процесс деления большей части лимфоцитов заторможен. Т-клетки, а они представлены по меньшей мере тремя типами, могут либо стимулировать клеточное деление после связывания антигена, либо продолжать подавлять его. Видимо, торможение имеет место в том случае, когда иммунная система узнает о наличии в антигене детерминанты, присутствующей также на поверхностях собственных клеток организма. Совершенно очевидно, что различение своих и чужих антигенов чрезвычайно важно для иммунной системы. Аналогично тому как нервная система находится обычно в заторможенном состоянии и только иногда по ней осуществляется проведение потока импульсов, так и иммунная система в основном ингибирована и лишь в определенных случаях развивается клон плазматических клеток. Торможение иммунологической активности обусловлено отчасти синтезом антител против других антител, а именно против антител, функционирующих в качестве рецепторов на поверхности В-клеток. [c.366]

    Биосинтез гликопептида стенки проходит через несколько этапов, включаюш их образование полисахаридных цепей, нараш ивание на них пептидных разветвлений и в заключение — сшивание этих пептидов пентагли-циновыми мостиками. Ряд антибиотиков блокирует определенные стадии этого процесса, что в итоге приводит к нарушению биосинтеза стенки и, следовательно, к появлению нежизнеспособных бактериальных клеток после деления. Так, бацитрацин и ванкомицин ингибируют биосинтез полисахаридных цепей гликопептида, а пенициллин угнетает заключительный этап — образование пентаглициновых сшивок. Гликопептид рассматриваемого типа — обитая основа клеточной стенки самых разнообразных бактерий в то же время подобные структуры отсутствуют в клетках животных организмов. Отсюда становятся понятными причины широты антибактериального спектра таких антибиотиков, с одной стороны, и их исключительно низкая токсичность для животных, с другой. [c.151]

    В стационарной фазе жизни клетки ее ДНК в плотно упакованных хромосомах почти недоступна для внешних повреждающих воздействий. Напротив, при делении клеток (митозе) хромосомы развернуты, ДНК почти обнажена и в таком состоянии уязвима для повреждающего воздействия внешних факторов (химические агенты, облучение и т.п.). Это значит, что агенты, способные вызывать повреждения ДНК, особенно активны по отношению к клеткам быстро пролиферирующих тканей, а это прежде всего ткани опухолей (и ткани кроветворных органов). Химиотерапия опухолей рассматриваемого типа [c.517]

    Между ними существует переходная группа, которая получила название микроаэрофильных организмов. Для их жизнедеятельности требуются малые концентрации кислорода в среде. Анаэробные микроорганизмы подразделяются на а) факультативные (условные) анаэробы, которые могут развиваться как в присутствии, так и в отсутствии молекулярного кислорода и б) облигатные (безусловные, строгие) анаэробы, развивающиеся только в отсутствии молекулярного кислорода, который для них является ядом. Указанное деление микроорганизмов носит, конечно, условный характер. В зависимости от потребности в кислороде у микробов может быть два типа дыхания аэробное, или настоящее дыхание, и анаэробное дыхание, или брожение. Тип дыхания зависит также от наличия тех или иных дыхательных ферментов в микробной клетке. Остановимся более подробно на этих типах дыхания. [c.528]

    Материал настоящего раздела посвящен общей характеристике прокариотных организмов (в основном эубактерий), отличающихся морфологическим и особенно физиологическим разнообразием. В основе морфологического разнообразия лежат различия в размерах и форме отдельных клеток, способах их деления, природе и наборе цитоплазматических включений, строении клеточной стенки и структур, локализованных снаружи от нее, наличии и типе дифференцированных форм, образующихся в процессе жизненного цикла. Всем этим вопросам посвящены главы 4 и 5. В главах 6 — 9 представлена общая картина физиологического разнообразия прокариот, складывающегося из различий в механизмах получения энергии и источниках питания, разного отношения к молекулярному кислороду и другим факторам внешней среды, прежде всего свету, температуре, кислотности среды. В главе 10 обсуждаются генетические механизмы, приведшие в процессе эволюции к структурно-физиологическому разнообразию прокариот. Глава II, посвященная проблемам систематики и описанию основных групп прокариот, иллюстрирует на конкретных примерах материал, представленный в предыдущих главах. Завершает раздел глава 12, в которой излагается наиболее общепринятая гипотеза происхождения жизни на Земле, приведшая к возникновению первичной клетки, и имеющийся в настоящее время экспериментальный материал, подтверждающий эту гипотезу. [c.24]


    В дополнение к этим общим различиям в путях миграции между Т- и В- клетками существуют в этом отношении столь же важные различия между разными группами клеток внутри каждого класса. Например, В-клетки опре- деленного типа покидают кровяное русло в стенке тонкой кишки эти клетки, в сущности, составляют специфическую для кишечного тракта подсистему лимфо1Штов, специализированную для ответа на антигены, проникающие ] в организм через кишечник. [c.12]

    Отсутствие прироста численности популяции (в условиях, когда существенно не происходит деструкции биомассы) может быть только при Zo=Q, 2о О. Биологический смысл этого положения заключается в следующем. Относительная скорость роста, согласно уравнению (2.145а), в начальный момент зависит от доли способных к делению клеток Zo в посевном материале. Условие 2о=0 означает, что в культуре, используемой в качестве посевного материала, полностью отсутствуют способные к делению клетки (точнее, клетки типа У ). При Zo <0 первоначальное количество способных к делению клеток может изменяться в данных условиях лишь в сторону его дальнейшего снижения. Соответственно, Zo = 0 означает, что доля клеток типа У может лишь сохраняться на исходном уровне. Следовательно, при 2о=0 и 2о О, доля клеток, способных к делению, и, как следствие, скорость роста популяции должны быть равны нулю. [c.208]

    У бактерий наиболее распространено бинарное деление (на две равные части), причем у грамположительных оно происходит сеп-той, а у грамотрицательных — перетяжкой. Другие типы размножения — почкование и множественное деление. При почковании, которое иногда происходит с помощью дополнительных выростов, можно выделить материнскую и дочернюю клетки (неравное деление). Множественное деление отмечено у некоторых цианобактерий (например, рода Оегтосагра), когда из одной клетки образуется множество мелких баеоцитов, которые иногда еще и подвижны. Нитчатые цианобактерии способны размножаться с помощью гонидий и гормогоний (рис. 56). Для некоторых метанотрофов характерно образование экзоспор. Сложные формы раз- [c.64]

    У многих объектов облучение вызывает задержку деления, и часть клеток, приступающих к делению после этой задержки, гибнет. Этот факт наводит на мысль, что задержка деления и гибель клеток при делении, возможно, представляют собой по существу сходные явления, различающиеся скорее количественно, чем качественно. Согласно этому предположению умеренное повреждение клетки вызывает некоторую задержку деления или затягивание его ранних стадий, тогда как более сильное повреждение, вызванное облучением в более сильных дозах, ведет к большей зад(2ржке деления и к гибели клетки при делении, Такое толкование не является, однако, обязательным и, по-видимому, в ряде случаев задержка деления и гибель клеток при возобновлении деления представляют собой независимые явления. Общий метод проверки независимости или связанности этих явлений заключается в том или ином изменении условий опыта, например типа излучения, его интенсивности, температуры, с тем, чтобы установить, носят изменения этих двух эффектов сходный или различный характер. [c.234]

    Как видим, у плазмид YRp-типа из-за отсутствия в их структуре генетических элементов, необходимых для равномерного распределения между клетками при делении, главным фактором, влияющим на стабильность наследования, является копийность. Однако даже высококопийные варианты плазмид YRp-типа утрачиваются клетками дрожжей с большой частотой. [c.302]

    Обнаружены эубактерии, осуществляющие фотосинтез кислородного типа, весьма сходные с цианобактериями, но отличающиеся от них составом фотосинтетических пигментов отсутствием фикобилипротеинов и наличием хлорофилла Ь. Организмы названы прохлорофитами. В девятом издании Определителя бактерий Берги они выделены в порядок Pro hlorales. В составе порядка 3 рода, различающихся морфологическими и некоторыми физио-лого-биохимическими признаками. Это одноклеточные (сферические) или многоклеточные (нитчатые) формы, неподвижные или подвижные. Размножаются бинарным делением. Клеточная стенка грамотрицательного типа, напоминает таковую цианобактерий. Нити ДНК, не отграниченные от цитоплазмы мембраной, располагаются в центральной области клетки. [c.322]

    Клетки типа 6 очень часто встречаюгся в древесине некоторых кустов и сравнительно редко в древесине, кото )ую используют в промышленности. Такая клетка известна как веретенообразная клетка паренхимы. Паренхим-пость ее состоит в том, что она в течение некоторого времени сохраняет живой протопласт, но по форме напоминает короткое волокно. Эта клетка безусловно возникает от продольной веретенообразноГ зародышевой клетки без деления перегородками. [c.59]

    Биологическая роль нуклеиновых кислот начала выясняться в конце 40-х — начале 50-х годов, когда впервые было выяснено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация — каким-то образом закодированный приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики , приближающего нас к познанию процесса синтеза белка в клетках, размножения клеток путем деления и в конечном итоге воспроизведения всего сложного животного или растительного организма в том виде, который характерен для родителей этого организма. Подробное обсуждение этих проблем увело бы нас далеко в область биохимии, в общих же чертах роль ДНК и РНК выглядит следующим образом. Молекулы ДНК находятся в клеточных ядрах, они содержат наследственную информацию в виде различной последовательности нуклеотидов. ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белков. Таким образом, молекулы РНК служат передатчиками от ДНК к местам клетки, где непосредственно осуществляется синтез белка. Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов М. Ниренбергом и Д. Матеи. [c.351]

    Впервые клеточная теория была сформулирована Шлейденом в 1838 г. и Шванном в 1839 г. Рудольф Вирхов расширил ее, провозгласив в 1855 г., что новые клетки образуются только из предсуществующих клеток в результате клеточного деления. Признание непрерывности жизни побудило других ученых второй половины XIX в. заняться исследованием строения клетки и механизмами клеточного деления. Совершенствование гистологических методов и создание микроскопов с более высокой разрешающей способностью позволило выявить важную роль ядра и в особенности заключенных в нем хромосом как структур, обеспечивающих преемственность между последовательными поколениями клеток. В 1879 г. Бовери и Флемминг описали происходящие в ядре события, в результате которых образуются две идентичные клетки, а в 1887 г. Вейсман высказал мысль о том, что гаметы образуются в результате деления какого-то особого типа. Эти два типа деления соответственно носят названия митоза и мейоза. Прежде чем заняться их изучением, полезно познакомиться поближе с хромосомами. [c.142]

    При первых делениях аскоспоры тип спаривания переключается на противоположный пцд контролем гена НО (от англ. homo-thallism). Ген НО кодирует эндонуклеазу, которая производит двунитевой сайт-специфический разрез ДНК в локусе МАТ или МАТа в зависимости от того, какая аллель присутствует в этом локусе. Двунитевой разрез инициирует направленную конверсию, при которой генетическая информация кассеты HML i замещает информацию, содержащуюся в локусе МАТ (или HMR замещает информацию МАТа). При этом кассеты сохраняют содержащийся в них генетический материал, а генетический материал, находившийся в локусе МАТ, теряется. Такое переключение происходит только в двух клетках на стадии микроколонии, состоящей из четырех клеток. После этого клетки типа спаривания а копулируют с клетками типа спаривания а. Образуются диплоидные клетки, гетерозиготные по МАТ /МАТц, и ген НО выключается. Далее гетерозиготный диплоид стабильно размножается до нового мейоза и споруляции, после чего при изоляции аскоспор весь процесс в ходе их прорастания повторяется. [c.431]

    Хотя гибридные плазмиды YEp-типа являются высококопийными, на стабильность их поддержания в клетках дрожжей прежде всего влияет не копийность, а способность правильно распределяться между клетками при делении [c.301]

    Очевидно, что во всех явлениях подобного типа соприкасающиеся поверхности клеток передают некоторый сигнал — команду на связывание клеток, на торможение деления и т. п. Додгое время о природе веществ, ответственных за такие межклеточные взаимодействия, а также за многие классы специфических взаимодействий типа клетка—макромолекула, ничего не было известно. Позд- [c.156]

    Переход раствора полимера в состояние студня при той же концентрации называется застудневанием, например, при охлаждении 5%-ного раствора желатины он превращается в студень. Застудневание отчетливо проявляется в прекращении броуновского движения в студне, оно не сопровождается заметным тепловым эффектом или изменением объема, что объясняется малым числом образующихся межцепных связей. Влияние электролитов на скорость застудневания зависит от их положения в лиотропном ряду (см. стр. 185), начиная от сульфатов, которые наиболее сильно ускоряют застудневание. Напротив, лиотропный ряд влияния электролитов на плавление студней имеет обратную последовательность, так как наиболее сильное расплавляющее действие оказывают ро-даниды и йодиды (см. стр. 208). Ввиду замедленной скорости установления равновесия в растворах полимеров (см. стр. 171), их нагревание и охлаждение может сопровождаться гистерезисом ряда свойств — вязкости, оптического вращения (мутаротация) и др., изменение которых обычно отстает от скорости изменения температуры растворов. Интересно, что слишком сильное охлаждение не ускоряет, а тормозит процесс застудневания, благодаря замедлению скорости образования межцепных связей. Например, по Хоку, 1,5%-ный раствор желатины в глицерине застудневает при комнатной температуре в несколько дней, а при 0° остается в течение нескольких недель в жидком состоянии. В эластичных гелях при определенной концентрации полимера и электролитов застудневание раствора может происходить в изотермических условиях, по типу тиксотропных превращений. Разбавленный студень желатины можно получить тиксотропным, подобно гелю гидроокиси железа тиксотропными свойствами обладает также протоплазма при некоторых клеточных процессах — во время деления клеток, при возбуждении клетки, при действии наркотиков и др. [c.209]

    При делении клетки образуются две дочерние клетки, каждая из которых содержит хромосомы, ДНК которых являются фактически точными копиями молекулы (молекул) родительской ДНК-Это простейший наблюдаемый процесс репликации. На практике, по одной из цепей родительского дуплекса оказывается в каждой дочерней клетке наряду с еще одной вновь синтезируемой комплиментарной цепью. Ферментом, который осуществляет этот новый синтез, является ДНК-полимераза П1, которая подбирает подходящие дезоксинуклеотиды, в виде их 5 -трифосфатов, по принципу Уотсон-Крнковского спаривания оснований к обеим раскрученным родительским цепям. Этот тип копирования известен под названием полуконсервативной репликации ДНК схема (2) . [c.198]

    В принципе возможны три механизма редупликации ДНК [162] консервативный с сохранением исходной двойной спирали и созданием новой дочерней спирали, полуконсервативный (см. стр. 496) и дисперсный с равномерным распределением исходного материала между четырьмя цепями двух дочерних двойных спиралей (см. [6]). Месельсон и Сталь изучали редупликацию ДНК при делении клеток Е. соИ с помощью меченых атомов и седиментации в градиенте плотности s l [76]. Была получена популяция клеток, меченных N . В период интерфазы митоза эти клетки переносились в среду, содержавшую (но не N ), и в ней делились. Из исходной популяции детей и внуков извлекалась ДНК и определялась ее плотность и радиоактивность. Исходная ДНК имела наибольшую плотность и была мечена N . ДНК детей оказалась меченной наполовину и ее плотность равнялась среднему арифметическому плотностей N -ДНК и N -ДНК- Наконец, ДНК внуков разделились при седиментации на две зоны — на зону с ДНК, меченную N и зону ДНК, содержащую оба типа ДНК. Эти результаты точно согласуются с полуконсерватквным механизмом. [c.536]

    Следовательно, для практического применения антител в качестве диагностического инструмента или компонентов терапевтических средств необходимо было создать такую линию клеток, которая росла бы в культуре и продуцировала антитела одного типа, обладающие высоким сродством к специфическому антигену-мишени, - моноклональные антитела. Подобная клеточная линия могла бы стать неиссякающим источником идентичных молекул антител. К сожалению, В-лимфоциты (В-клетки), синтезирующие антитела, не могут воспроизводиться в культуре. Решение данной проблемы виделось в создании гибридной клетки. Получив генетическую составляющую от В-клетки, она могла бы вырабатывать антитела, а приобретя способность к делению от клетки совместимого типа — расти в культуре. Было известно, что В-лимфоциты иногда перерождаются и становятся раковыми (миеломными) клетками, приобретая спо- [c.184]

    Среди нитчатых цианобактерий прослеживаются в разной степени выраженные непосредственные контакты между соседними клетками, образующими трихом. У представителей рода Pseudoanabaena клетки в нити разделены глубокими перетяжками, а у Os illatoria деление, происходящее путем формирования поперечной перегородки, приводит к сохранению плотных контактов между клетками на больщих участках клеточной поверхности (рис. 24, А). Часто клетки в трихоме окружены общим чехлом, который может рассматриваться в качестве дополнительного фактора, удерживающего их в определенном порядке. У нитчатых цианобактерий, принадлежащих к описанному типу, с помощью электронной микроскопии между соседними вегетативными клетками обнаружены структуры, названные микроплазмодесмами, обеспечивающие непрерывность мембранных структур и цитоплазматического содержимого в клетках трихома. [c.78]


Смотреть страницы где упоминается термин Клетка типы делений: [c.25]    [c.88]    [c.43]    [c.9]    [c.125]    [c.20]    [c.39]    [c.171]    [c.191]    [c.241]    [c.146]    [c.591]    [c.16]    [c.114]    [c.197]    [c.1017]    [c.21]    [c.53]   
Биология развития (1979) -- [ c.66 , c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Делении



© 2025 chem21.info Реклама на сайте