Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты, определение активност

    В качестве сопрягающих ферментов часто используют дегидроге-назы и их коферменты в окисленной или восстановленной форме. Например, активность гексокиназы определяют в системе, содержащей дегидрогеназы глюкозо-6-фосфата и НАДФ. Скорость восстановления НАДФ соответствует скорости гексокиназной реакции. Иногда используют системы двойного или тройного сопряжения, однако конечным звеном такой системы является соответствующая дегидрогеназа (например, при определении активности фосфофруктокиназы, креатин-киназы). При определении активности в сопряженной системе следует учитывать ряд условий. [c.208]


    С другой стороны изучение ферментативных реакций в стационарном режиме имеет ряд существенных недостатков. Наиболее важным из них является то, что стационарная кинетика дает весьма ограниченную информацию о детальном кинетическом механизме ферментативной реакции. Стационарная кинетика, отражая лишь лимитирующие стадии процесса, практически не дает информации о быстрых , нелимитирующих стадиях превращения субстрата в активном центре фермента. Определение элементарных констант скорости многостадийной ферментативной реакции из данных стационарной кинетики не представ-ляется.возможным. Действительно, кинетика каталитической реакции, включающей п промежуточных соединений (схема 5.16), описывается 2 п + 1) константами скорости. Стационарная же скорость этой обратимой реакции независимо от числа промежуточных соединений, принимающих участие в механизме реакции, дается уравнением (см. гл. VI) [c.174]

    В настоящее время установлено, что специфичность и каталитические свойства многих ферментов обусловлены наличием в молекуле фермента определенных активных центров или активных участков полипептидной цепочки. В ряде случаев установлен характер и порядок чередования остатков аминокислот в этих функционально наиболее важных участках. Так, особенно важную роль играет фрагмент полипептидной цепи, имеющий строение аспарагиновая или глютаминовая кислота —серин — глицин или аланин (холинэстераза, трипсин, тромбин и др.). От некоторых ферментов оказалось возможным отщепить часть молекулы без существенного снижения их каталитической активности. К числу таких ферментов принадлежат, например рибонуклеаза и ряд протеолитических ферментов. [c.124]

    Строение ферментов. По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров. [c.168]

    Катализ термического разложения. Этот процесс часто называют каталазным , так как он является модельным для определения активности некоторых ферментов, в частности каталазы. [c.344]


    Так как сайты 6 и 7, прилегающие к активному центру, обязательно заняты при всех продуктивных способах связывания субстрата с ферментом, определение относительных [c.68]

    Набор для определения активности фермента альдо-лазы в сыворотке крови [c.580]

    Ферменты обладают свойствами, необычными для других катализаторов. Прежде всего, они характеризуются весьма специфической чувствительностью к температуре. Экспериментальные исследования показали, что любой конкретный фермент проявляет максимальную активность при температурах, близких к нормальной температуре организма, в котором находится данный фермент. На рис. 25.6 показан типичный график зависимости активности фермента от температуры. Нередко случается наблюдать, что при повышении температуры выше обычной температуры действия фермента его активность временно возрастает, но затем снижается. Вторичная и третичная структуры белковой молекулы фермента, от которых зависит активность активного центра, поддерживаются множеством слабых сил, удерживаюших белковую цепь в определенной конфигурации. Нагревание приводит к разрушению прежней структуры белковой цепи фермент денатурируется и полностью теряет свою активность. [c.451]

    Практическая работа в лаборатории сопровождается проведением семинаров, где рассматриваются теоретические вопросы, связанные со способами очистки ферментов, оптимизацией методов определения активности, а также вопросы ферментативной кинетики растворимых и иммобилизованных ферментов. Обсуждаются и основные экспериментальные результаты, полученные студентами. [c.196]

    Активность иммобилизованных ферментов можно определить практически всеми известными методами (непрерывными и периодическими, спектрофотометрическими, рН-метрическим, флуоресцентными, химическими и др.). При работе с иммобилизованными ферментами не-> обходимо постоянно перемешивать реакционную смесь в процессе из--мерения активности, так как в противном случае по мере оседания частиц носителя активность будет уменьшаться. При определении активности ферментов методом отбора проб обычное осаждение белка (например, трихлоруксусной кислотой) в случае иммобилизованных препаратов можно заменить отделением фермента фильтрованием или центрифугированием. [c.298]

    Перед тем как приступить к выделению и очистке того или иного фермента, необходимо выбрать удовлетворительный тест для его идентификации и количественного определения. Прямые методы существуют лишь для очень ограниченного круга ферментов, поэтому используют способность ферментов катализировать специфическую реакцию. Чтобы иметь возможность контролировать степень очистки фермента, его активность относят на 1 мг общего белка (так называемая удельная активность ). [c.198]

    Поставленные задачи решаются на основе современных методов исследования ферментов. Практическая направленность занятий связана с освоением различных методов регистрации скоростей ферментативных реакций, включающих использование сопряженных ферментных систем и метода радиоактивного анализа. С целью определения активности мембранных ферментов осваиваются техника получения различных субклеточных структур и приемы работы с различными типами детергентов. Проблемы структурного анализа ферментов решаются с привлечением методов избирательной химической модификации белков, флуоресцентных методов, а также методов ковалентной и адсорбционной иммобилизации на различных носителях, включая искусственные фосфолипидные мембраны (липосомы). Кроме того, осуществляется практическое знакомство с различными аспектами кинетического исследования ферментов осваиваются различные способы оценки кинетических параметров, ингибиторный анализ, проводится исслс- [c.329]

    Широкое распространение приобрели методы определения активности с использованием вспомогательных ферментов. Они основаны на том, что продукт изучаемой реакции служит субстратом вспомогательного фермента. Этот метод имеет особое преимущество в тех случаях, когда непрерывная регистрация скорости изучаемой реакции затруднена или когда продукт реакции является ингибитором исследуемого фермента. [c.208]

    Во-первых, сопрягающий фермент не должен лимитировать скорость изучаемой реакции. Практически 30-кратный избыток его по отношению к активности изучаемого фермента обеспечивает достаточно быстрое превращение образующегося продукта. Чтобы убедиться в правильности выбранных количеств сопрягающего фермента, полезно провести сравнительное определение активности с большим и меньшим (в 4 раза) количеством. Если скорость изучаемого фермента при этом не изменяется, сопрягающая система подобрана правильно. Удобно изучать скорость реакции, когда добавленное количество вспомогательного фермента обеспечивает изменение оптической плотности на [c.208]


    В-пятых, при определении активности ферментов с помощью сопрягающих систем реакцию удобно начинать либо одним из субстратов изучаемой реакции, либо самим ферментом. Такая постановка позволяет предварительно выявить возможность протекания побочных реакций. Кроме того, присутствие системы сопряжения в среде инкубации до начала реакции обеспечит плавную регистрацию образующегося продукта. [c.209]

    Влияние температуры на стабильность ферментов. Фермент (концентрация его в пробе может варьировать в широких пределах) инкубируют в течение определенного интервала времени при серии фиксированных значений температуры (2° С, 20° С, 40° С, 60° С), после чего отбирают пробы для определения активности в стандартных условиях. [c.214]

    Для фермента растворимой клеточной фракции и солюбилизированного из митохондрий исследуют профиль рН-зависимости активности в диапазоне изменений pH 6,5—9,0. Вследствие замены фосфатного буферного раствора трис-НС1 буфером в области изменения pH 7,5—8,0 определение активности фермента проводят в обеих буферных системах. При интерпретации полученных данных делают поправку с учетом влияния состава буферной системы на активность фермента. [c.354]

    III. ВЫДЕЛЕНИЕ, ОЧИСТКА И ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ [c.216]

    Определение активности фермента проводят по реакции синтеза гликогена  [c.220]

    Пируваткиназа. Раствор фермента разводят трис-НС1 буфером непосредственно перед определением активности. [c.270]

    ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ИММОБИЛИЗОВАННЫХ ФЕРМЕНТОВ [c.298]

    Перед определением активности готовится среда инкубации и делается необходимое разведение протеинкиназы. К рассчитанному объему буфера Г добавляют нерадиоактивный цАМФ до концентрации 1 мкМ радиоактивный цАМФ добавляется в таком количестве, чтобы в 10 мкл смеси был счет радиоактивности около 30 000 имп/мин (10 мкл из среды инкубации наносят на фильтр, сушат и просчитывают в сцинтилляторе ЖС-106). Разведение фермента проводят в отдельных пробах так, чтобы в 20 мкл раствора содержалось по 10, 20, 30, 40, 50 мкг белка соответственно. Среду инкубации раскапывают по 95 мкл в инкубационные пробирки. К пробам добавляют по 20 мкл соответствующего раствора протеинкиназы (в контрольную пробу добавляют 20 мкл буфера). Пробы инкубируют в холодильнике (или во льду) в течение 1,5—2 ч. [c.331]

    Перед определением активности готовят среду инкубации и делают соответствующие разведения фермента. К рассчитанному объему буфера Е добавляют АТФ до конечной концентрации 50 мкМ, гистон Н1 — до концентрации 3 мг/мл, цАМФ — до концентрации 10 мкМ, радиоактивный АТФ — в таком количестве, чтобы счет радиоактивности в 10 мкл среды составлял около 40 000 имп/мин (10 мкл среды наносят на фильтр, высушивают и просчитывают в сцинтилляторе ЖС-106 в фосфорном канале). Фермент разводят таким образом, чтобы в 20 мкл раствора было по 2, 3, 5, 7, 10 мкг белка соответственно. Фильтры нумеруют, надписывая их простым карандашом. [c.332]

    Исследуют зависимость скорости реакции от концентрации водородных ионов в диапазоне значений pH 7,2—8,4. В экспериментах используют 100 мМ трис-НС1 буфер, перед определением активности фермент выдерживают при данном значении pH в течение 3 мин. [c.336]

    Реакционную смесь готовят непосредственно перед определением активности Инкубацию гелей проводят в темноте при температуре 37° С или при комнатной температуре в течение различных промежутков времени (10—60 мин). Оптимальным считается временной интервал, в течение которого происходит максимально полное выявление всех изозимов фермента. При этом не должна иметь место диффузия восстановленного тетразолия из специфических зон в свободные от лактатдегидрогеназы области геля. После проявления гелей на специфическую активность их фиксируют в 7%-ной уксусной кислоте [c.339]

    Можно определять активность АХЭ или ХЭ. Для определения активности АХЭ в большинстве случаев подвергают гемолизу эритроциты ХЭ определяют в сыворотке крови. При использовании цельной крови можно путем выбора специфического субстрата (ацетил-р-метилхолина для АХЭ и бутирилхолина для ХЭ) или применяя определенные концентрации субстрата достигнуть дифференцирования ферментов. Последний из указанных способов основан на уже описанном ингибировании АХЭ более высокими концентрациями субстрата. Так, при концентрации ацетилхолина 10 М определяется преимущественно АХЭ, при концентрации же 10 М — ХЭ, однако в каждом случае в определенной степени (примерно на /б) проявляет активность и другой фермент. Определение активности осуществляют либо по установлению скорости ферментативного расщепления субстрата (кинетический метод) или путем определения конечных продуктов" и не вступившего в реакцию субстрата. [c.165]

    В основе технологии очень многих пищевых продук- тов лежат ферментативные процессы. Как показано в гл. IV 14, каждый фермент проявляет активность при строго определенной концентрации ионов водорода, т. е. при определенном значении pH среды. При отклонении pH от оптимального значения для данного фермента активность его резко снижается и тот биологический процесс, в котором он участвует, за- медляется или совсем прекращается. Поэтому кот роль pH при различных ферментативных процессах является обязательным. [c.143]

    ДинитрофениЛ ПротвоАЯые пептидов-субстраты нового типа для определения активности протеолитических ферментов. Определение активности карбоксипептидаз.— Биохимия , 1973, т. 38, с. 790—796. Авт. Л. А. Люблинская, Т. И. Вогаиова, Т. С. Пасхина, В. М. Степанов. [c.372]

    Химики-органики развили методологию синтеза для того, чтобы лучще понимать механизмы органических реакций и создавать новые соединения. Биохимики в свою очередь изучают процессы жизнедеятельности, применяя биохимические методы исследования (очистка и определение активности ферментов, метод радиоактивных индикаторов в системах in vivo). Первые владеют методами, позволяющими получать аналоги соединений, присущих биологическим объектам, но часто затрудняются определить, какой синтез был бы полезен. Вторые способны оценить, что именно было бы полезно синтезировать в лаборатории, но не обладают нужной квалификацией для рещения этой задачи. Очевидна необходимость согласованного подхода, и химики-биоорганики часто работают в двух лабораториях в одной — синтезируя, в другой — изучая биологические объекты. В результате переплетения химических и биологических подходов была выработана качественно новая концепция построения моделей для изучения и разделения различных параметров сложного биологического процесса. Многие биологические реакции, а также действие (специфичность и эффективность) участвующих в них [c.13]

    Примеров пространственного (геометрического) кодирования в химии и биологии мож[го привести очень много. Отношения катализатора, в частности фермента (его активной группы) и субстрата, гормона и рецептора, антигена н антитела, эффекты феромонов, явления узнавания молекул и т. п. достаточно убедительно свидетельствуют о решающем значении определенных дискретных совокупностей геометрических конфигураций для развития того или иного процесса. Заметим, что геометрия в наиболее развитых структурах не абсолютно жесткая (рнс. П1.6). Молекулы антител, как доказано в настоящее время, способны изменять форму, причем их фрагменты вращаются нли раздвигаются как концы щипцов, приспосабливаясь к менее подвижной структуре антигена (об аналогичных явлениях в белках см. 1гиже), [c.334]

    Определение активности пируваткиназы. Активность фермента определяют энзиматическим методом по количеству образовавшегося в ходе реакции пирувата. Метод основан на использовании сопряженной лактатдегидрогеназной реакции (с. 270). За ходом реакции следят на спектрофотометре по уменьшению оптической плотности при 340 нм в результате окисления НАДН. Показания прибора регистрируют каждые 30 с в течение 3 мин. [c.334]

    Встречается и обратная ситуация, когда 5-образная кривая в присутствии аллостерического эффектора превращается в гиперболическую. Например, пируваткиназа скелетных мышц характеризуется кинетикой Михаэлиса, но в присутствии аллостерического ингибитора (фенилаланина) кривая зависимости скорости реакции от концентрации субстрата становится 5-образной, при этом сродство фермента к субстрату (фосфоенолпирувату) уменьшается. Изменение кинетических свойств под действием аллостерических эффекторов обусловлено конформационной перестройкой молекулы белка. С помощью сшивающих реагентов или каких-либо других воздействий на структуру белка можно наблюдать потерю чувствительности фермента к аллосте-рическим эффекторам. Для выявления аллостерических свойств иногда необходимо изменить условия определения активности сместить pH реакционной среды в кислую или щелочную область от рН-оптимума или исследовать влияние эффектора при ненасыщенной концентрации субстрата. [c.215]

    Определение активности образующейся фосфорилазы а. Активность фермента измеряют по обратной реакции (синтезу гликогена), сопровождающейся выделением неорганического фосфата. К малеат-ному буферу (0,1 М), pH 6,5, содержащему 0,1 М глюкозо-1-фосфат — 2%-ный гликоген, добавляют равный объем раствора, полученного после киназной реакции. Реакцию проводят 5 мин при 30° С. Останавливают реакцию добавлением реактивов для определения неорганического фосфата. Количество образовавшегося фосфата рассчитывают по калибровочному графику. [c.224]

    Для определения активности (при любом методе) препарат фермента подготавливают для работы, активируя его в среде, содержащей 1 мМ. Mg ls и 30 мМ. гистидин (или имидазол). Смесь инкубируют 10—20 мин при 0° С. Предварительно растворы фосфоглюкомутазы л сопрягающего фермента (дегидрогеназы глюкозо-6-фосфата) обессоливают на колонке с сефадексом G-25 (тонкий). [c.227]

    Примечание. Если в препарате дегидрогеназы глюкозо-6-фос-фата имеется примесь дегидрогеназы-6-фосфоглюконата, при энзиматическом методе определения активности фосфоглюкозоизомеразы образуется 6-фосфоглюконат — конкурентный ингибитор фермента. Учитывая количество образовавщегося б-фосфоглюконата, вносят поправку при расчете активности фосфоглюкозоизомеразы. [c.234]

    Определение активности альдолазы этим способом основано на лрименении сопряженной системы, в которой в качестве вспомогательного фермента используется глицеральдегид-З-фосфатдегидрогеназа (ГАФД)  [c.247]

    Триозофосфатизомераза пивных дрожжей имеет молекулярную массу 53 000 Да, состоит из двух неидентичных субъединиц. Оптимум pH в триэтаноламин-НС1-буфере — 7,0—8,5 и 7,6—9,5 соответственно при определении активности с использованием в качестве вспомогательного фермента глицерол-З-фосфатдегидрогеназы или глицеральде-гид-З-фосфатдегидрогеназы. Константа равновесия реакции изомеризации D-глицеральдегид-З-фосфата при pH 7,5 и 25°С равна 19. Кт для этого субстрата при тех же условиях — 1,27x10 М, а для диоксиацетонфосфата — 1,23X10 М. Л ° 1см при 280 нм равна 9,9. [c.249]

    При определении активности иммобилизованной дегидрогеназы из скелетных мышц кролика используют буфер с pH 9,5, а для фермента из дрожжей — буфер с pH 8,0. Реакционная смесь общим объемом 3 мл содержит 0,1—0,2 мл суспензии иммобилизованной глицеральде-гид-З-фосфатдегидрогеназы (2—20 мкг фермента) и следующие компоненты (даны конечные концентрации) 3-фосфоглицериновый альдегид — 1,5 мМ, НАД — 2 мМ, арсенат натрия — 5мМ, ЭДТА — 5 мМ, глициновый буфер — 0,1 М, pH 9,5 (для фермента из мышц кролика) или трис-НС1 буфер — 0,05 М, pH 8,0 (для фермента из дрожжей). Реакцию начинают добавлением 3-фоофоглицеринового альдегида и при непрерывном перемешивании определяют скорость образования НАДН в течение 1—2 мин. [c.299]

    Суспензию сефарозы с иммобилизованной дегидрогеназой промывают 10-кратным объемом раствора мочевины, смешивают с 4-кратным объемом раствора мочевины той же концентрации и инкубируют суспензию при перемешивании. За ходом инактивации следят, измеряя активность фермента на носителе. Через каждые 10 мин из инкуба-ционной смеси отбирают аликвоты препарата дегидрогеназы и без отмывания геля от мочевины вносят их в стандартную систему для определения активности. Реакцию начинают добавлением субстрата через 10 с после внесения суспензии сефарозы. Исследуют влияние концентрации мочевины на процесс инактивации фермента. Оптимальной концентрацией мочевины является такая, которая позволяет провести денатурацию 3 из 4 субъединиц дегидрогеназы и перевести эти субъединицы в раствор. Подбирая концентрацию мочевины, следует получить такую зависимость инактивации фермента от времени, на которой будет выраженное плато на уровне 25% от исходной активности. При определении белка и активности на разных стадиях денатурации можно показать, что в начале плато в связанном с матрицей состояний находится димер дегидрогеназы, сохраняющий 50% от исходной удельной активности. При сохранении в процессе инкубации активности такого димера происходит постепенное отщепление неактивной субъ- [c.302]

    Навеску (5 г) тканевой кашицы (приготовление см. на с. 65) взвешивают и переносят в стеклянный стакан гомогенизатора Поттера. Добавляют среду выделения из расчета 9 мл среды на 1 г ткани и гомогенизируют в течение 30 с с помощью тефлонового пестика без нарезки. Полученный гомогенат центрифугируют при 20 ООО в течение 15 мин. Супернатант после центрифугирования представляет собой 10%-ную растворимую клеточную фракцию. Препарат фильтруют через 4 слоя марли и хранят порциями при —5°С в течение 2 нед. Размораживание растворимой клеточной фракции проводят при комнатной температуре. Перед определением активности аспартатаминотрансферазы препарат фермента разводят средой выделения до конечного разведения 1 100. [c.352]

    Определение активности аспартатаминотрансферазы. Активность фермента определяют энзиматическим методом по количеству образовавшейся щавелевоуксусной кислоты в процессе прямой аминотранс-феразной реакции. Метод основан на использовании сопряженной малатдегидрогеназной реакции согласно схеме  [c.352]

    Определение активности фруктозо-1,6-дифосфатазы. Активность фермента определяют энзиматическим методом по количеству образовавшегося фруктозо-6-фосфата. Метод основан на использовании системы двойного ферментного сопряжения с участием глюкозо-6-фос-фатизомеразы и дегидрогеназы глюкозо-6-фосфата согласно схеме  [c.355]


Смотреть страницы где упоминается термин Ферменты, определение активност: [c.233]    [c.167]    [c.149]    [c.7]    [c.220]    [c.353]    [c.363]    [c.369]   
Методы очистки белков (1995) -- [ c.277 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Активность фермента

Активные ферментов

Определение ХПК активного ила

Фермент активность, определение

Ферменты определение



© 2025 chem21.info Реклама на сайте