Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты продукты распада

    При нагревании с нингидрином (трикетогидринденгидрат) растворов аминокислот, продуктов распада белков, первичных или вторичных аминов возникает темно-синее окрашивание. Химизм этих цветных реакций довольно сложен вследствие возникновения различных побочных реакций. При взаимодействии а-аминокислот с нингидрином вначале происходит окисление аминокислоты, сопровождающееся восстановлением нингидрина (I) СООН [c.370]


    Высказывались также взгляды, что источником образования изопре-нового скелета могут быть аминокислоты—продукты распада белковых веществ, например лейцин  [c.156]

    Суш,ественный вклад в энергетику мышечной деятельности, особенно длительной, вносят аминокислоты — продукты распада эндогенных белков. Их количество в тканях во время выполнения длительной физической работы может увеличиваться в 20—25 раз. Эти аминокислоты окисляются и восполняют АТФ либо вовлекаются в процесс новообразования глюкозы и способствуют поддержанию ее уровня в крови, а также уровня гликогена в печени и скелетных мышцах (см. рис. 98). [c.262]

    Для синтеза белков в организме используются не только аминокислоты, поступающие с кормом, но и аминокислоты-продукты распада белков в тканях. Однако [c.121]

    В. С. Садиков [33]. Они подвергали гидролизу животные организмы— свинок, кроликов, кошек, мелких рыб—и установили, что лучше всею гидролиз производить не в присутствии концентрированных H. SO или НС1, а в автоклаве при помощи разбавленных кислот. При нагревании различных белков в автоклаве при ]40--150° с 0,5—4"о НС гидролиз заканчивается через 3—6 час., а при 180° в этих же условиях через 1—3 часа. В растворе образуется смесь простейших а-аминокислот и других растворимых в воде органических соединений, входящих в состав всех органов животного, а нерастворимые продукты распада—жиры, жирные кислоты, холестерины и т. д.—могут быть отделены от раствора. Этот способ гидролиза белков является большим достижением гомогенного катализа и известен под названием—автоклавный гидролиз белковых веществ. [c.542]

    В живых организмах происходит непрерывный распад аминокислот, идущий по первому порядку. При жизни продукты распада выводятся из организмов (с потом, дыханием, мочой и т. п.), а при гибели очистка организмов от продуктов разложения прекращается и эти продукты накапливаются. По количеству накопившихся продуктов распада аминокислот можно вычислить продолжительность этого распада от его начала до момента проведения анализа. На этом основано датирование в современной археологии, криминалистике и т. п. [c.159]

    Микроорганизмы используют в большинстве случаев азот белка в виде промежуточных продуктов распада (аминокислот) и в форме конечного продукта — Рис. 83. Схема круговорота углерода солеи аммония — для ВТОричногО в природе синтеза протеинов. Но белок со- [c.264]

    В продуктах распада природных белков были обнаружены различные аминокислоты. Еще в 1888 г. Данилевский высказал гипотезу о том, что различные аминокислоты, образуя белки, соединяются за счет амино- и карбоксильных групп с образованием группировки—Н—С—, впоследствии Названной пептидной НО [c.180]


    Азотное питание. Дрожжи способны синтезировать все аминокислоты, входящие в состав нх белка, непосредственно нз неорганических азотистых соединений при использовании в качестве источника углерода органических соединений — промежуточных продуктов распада углеводов, которые образуются при дыхании и брожении. [c.201]

    Большое значение в разнообразных процессах обмена в-в имеет ферментативное Д. Существует два типа подобных р-ций простое Д. (обратимая р-ция) и окислительное Д., в к-ром происходит сначала Д., а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное Д. пировиноградной и а-кетоглутаровой к-т-промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное Д. аминокислот у бактерий и животных. [c.19]

    Существенный недостаток ГХ состоит в том, что для анализа нельзя непосредственно использовать труднолетучие аминокислоты. Сначала их нужно перевести в летучие соединения путем получения подходящих производных или с помощью реак-Щ1Й разложения. Наилучшим оказалось одновременное замещение амино- и карбоксильной функций аминокислот. В табл. 1-11 приведены производные аминокислот, с которыми удалось полное разделение, или получены достаточно удовлетворительные результаты. Продукты распада, такие, как альдегиды, амины, аминоспирты, нитрилы, гидроксикислоты и др., до сих пор не удалось однозначно идентифицировать. [c.62]

    За последние годы появилось значительное число работ, посвященных выяснению механизма образования алкалоидов в растениях. Многие исследователи считают, что алкалоиды образуются из аминокислот, т. е. являются продуктами распада белков. [c.170]

    Против использования для кормовых целей биомассы дрожжей и бактерий имеется ряд возражений, в частности в связи с высоким содержанием в ней нуклеиновых кислот. Дрожжи содержат до 12% нуклеиновых кислот, быстрорастущие бактерии— до 16% ( допустимая норма нуклеиновых кислот в питании человека составляет 2 г в день). При разрушении в организме животных таких количеств нуклеиновых кислот образуется много нежелательных продуктов распада — мочевой кислоты и др. В то же время в грибах при тех же условиях выращивания содержится 1,5—2,8% нуклеиновых кислот. Кроме того, у дрожжей имеется толстая и прочная клеточная стенка, которая с трудом разрушается в организме животного и вследствие этого снижается доступность питательных веществ дрожжей. Дрожжевой белок не сбалансирован по серусодержащим аминокислотам. Среди дрожжей мало культур с целлюлазной активностью. Из всего сказанного выше ясно, что эта группа микроорганизмов не может использоваться для культивирования на целлюлозных средах. Необходимо также отметить, что дрожжи из продуктов гидролиза древесины могут усваивать только целлюлозу, геми- [c.117]

    Весь сложный процесс переваривания пищевых белков в пищеварительном тракте настроен таким образом, чтобы путем последовательного действия протеолитических ферментов лишить белки пищи видовой и тканевой специфичности и придать продуктам распада способность всасываться в кровь через стенку кишечника. Примерно 95—97% белков пищи всасывается в виде свободных аминокислот. Следовательно, ферментный аппарат пищеварительного тракта осуществляет поэтапное, строго избирательное расщепление пептидных связей белковой молекулы вплоть до конечных продуктов гидролиза белков —свободных аминокислот. Гидролиз заключается в разрыве пептидных связей —СО—МН— белковой молекулы. [c.418]

    Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот. Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот. В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада [c.426]

    Как видно из схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО,, Н,0 и МНз) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (см. главу 16). [c.429]


    В случае применения кислот, помимо расщепления молекулы протеина до аминокислот, происходят вторичные процессы, образующиеся продукты распада окисляются, соединяясь в циклические комплексы и дают темноокрашенные продукты, называемые гуминовыми веществами, более богатые углеродом, нежели протеины. [c.18]

    Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности. В организме здорового взрослого человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие азотного баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т. е. количество азота, полученного с белками пищи, равно количеству выделяемого азота. В молодом растущем организме идет накопление белковой массы, образуется ряд нужных для организма соединений, поэтому азотный баланс будет положительным — количество поступающего азота с пищей превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях, недостатке в рационе питания белков, незаменимых аминокислот, витаминов, минеральных веществ наблюдается отрицательный азотный баланс — количество выделенного из организма азота превышает его поступление в организм. Длительный отрицательный азотный баланс ведет к гибели организма. На белковый обмен влияют биологическая ценность и количество поступающего с пищей белка. [c.18]

    Белки — углеводы. Связующим звеном служит пировиноградная кислота. Промежуточные продукты распада углеводов незаменимы в синтезе аминокислот (подробнее см. тему 5 Пути биосинтеза аминокислот у живых микроорганизмов ). [c.459]

    Материалом для образования многих алкалоидов могут служить продукты распада белковой молекулы. Например, из аминокислоты лизина через промежуточный продукт кадаверин могут образоваться ядра пиридина и пиперидина  [c.290]

    Продукты распада белка всасываются в виде аминокислот и, как показано Е. С. Лондоном, также и в виде простейших пептидов. [c.158]

    Продукты распада белка — полипептиды — также дают биурето-вую реакцию. Цвет образующихся медных комплексов определяется числом аминокислот, связанных пептидной связью. Дипептиды дают синюю окраску, трипептиды — фиолетовую, а тетрапептиды и более сложные пептиды — красную. Фиолетовый цвет медного комплекса с белком в условиях проведения биуретовой реакции указывает на преобладание в сложной белковой частице трипептидных группировок (это подтверждается и другими данными). [c.120]

    Расщепление белков протеолиз) протекает под действием протеолитических ферментов, в результате чего образуются многочисленные азотосодержащие соединения. Продуктами распада белков в молочных продуктах являются пектиды различной молекулярной массы и аминокислоты. В результате распада белков и аминокислот молочные продукты обогащаются растворимыми в воде азотистыми и безазотистыми соединениями, в результате чего готовый продзтсг приобретает необходимую консистенцию, характерный вкус и запах. На стадии разложения аминокислот микроорганизмами происходит их дезаминирование, которое в зависимости от условий среды может идти окислительным, гидролитическим и восстановительным путями. [c.1084]

    Развитие ферментативных процессов при созревании мяса приводит к накоплению в нем веществ, влияющих на вкус и аромат готовых мясных продуктов. Этими соединениями являются продукты распада и пептидов (глютаминовая кислота, треонин, серосодержащие аминокислоты и др.), нуклеотидов (инозинмонофосфорная кислота, инозин, гипоксантин, рибоза), углеводов (глюкоза, фруктоза, молочная, пировиноградная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатин и другие азотистые экстрактивные вещества. Среди летучих компонентов, определяющих аромат продуктов из созревшего мяса, обнаружены жирные кислоты, карбонильные соединения, спирты, эфиры. Существенную роль в формировании запаха играют серосодержащие соединения, предшественниками которых являются цистеин, цистин и метионин. На вкус и аромат мясопродуктов значительно влияют сахароаминные реакции или реакции неферментативного потемнения при тепловой обработке мяса, в которых участвуют редуцирующие сахара, аминокислоты или белки, а также альдегиды, возникающие в результате превращения жирных кислот. [c.1131]

    Тканевое дыхание и биологическое окисление. Расиад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к вьщелению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом  [c.306]

    Природные имидазольные основания в большинстве своем обязаны биогенетическим происхождением белковой аминокислоте гистидину 6,644. Декарбоксилирование предшественника 6,644 ведет к гистамину 6.645, а дезаминирование — к урокаиновой кислоте 6,646. Так как гистидин — непременная составная часть белка, то вещества 6,645 и 6.646 и некоторые другие продукты распада аминокислоты 6,644 обнаруживаются в самых различных организмах. [c.572]

    Описанные свойства веществ, входящих в состав растений, и их превращения позволяют сделать вывод, что углеобразова-телями необходимо считать лигнин, воски, жиры и смолы целлюлоза, пектиновые вещества и белки могут принимать лишь весьма ограниченное участие в образовании углей за счет своих продуктов распада — альдосахаров и аминокислот, которые дают бурые конденсаты, сходные с гуминовыми веществами. [c.27]

    В клетках кишечного эпителия происходит также синтез фос фолипидов из глицерина, жирных кислот и азотистых оснований (холин, коламин и т. д.). Последние образуются из продуктов распада белков - аминокислот. [c.62]

    Одним из основных продуктов распада липидов, в частности высших жирных кислот, возникающих при гидролизе триглицеридов, фосфа-тидов или стеролов, является ацетил-КоА. Включаясь в цикл трикарбоновых кислот, он обеспечивает синтез а-кетоглутаровой кислоты, превращение которой в аминокислоты рассмотрено выше. Поступая в глиоксилевый цикл, ацетил-КоА служит для расширенного воспроизводства в организме оксалоацетата, а из него - ПВК, Из обеих н.азщн-ных кислот также синтезируются аминокислоты. [c.459]

    Аммиак находится в природных водах в основном в виде иона аммония— ЫН4 постепенно он окисляется в результате нитрифицирующего действия бактерий в нитритиый — N0 , а затем нитратный — N0 " ионы. Образуется аммиак главным образом при биохимических процессах, протекающих при участии бактерий и ферментов, обусловливающих гидролитическое расщепление конечного продукта распада белковых веществ — аминокислот. При неполном разложении белковых веществ аммониевая группа остается в составе сложных соединений, находящихся в коллоидном состоянии (альбуминоидный азот). Частично МН -ион может образоваться и при восстановлении нитратов и нитритов в болотистых водах, содержащих большое количество гуматов эти же ионы могут восстанавливаться сероводородом, закисным железом и др. Содержание аммиака в природных водах обычно не превышает десятых долей миллиграмма (иногда достигает 1 мг) в литре в редких случаях, при наличии биологических загрязнений, концентрация его выше. [c.174]

    Изатин можно рассматривать как о-хинон индола, и поэтому представляется целесообразным испытать, не действуют ли как катализаторы дегидрирования также и другие о-хиноны. В 1928 г., через год после открытия катализа изатином, Эдль-бахер и Краус [И 1] нашли, что гликоколь дегидрируется кислородом воздуха в слабошелочной среде в присутствии адреналина. При этом, как и при дегидрировании изатином, в качестве продуктов распада выделяется формальдегид, аммиак и двуокись углерода. Киш [112] в многочисленных работах исследовал эту реакцию подробнее.. Он нашел, что, подобно адреналину, в качестве катализаторов дегидрирования гликоколя может быть использован также пирокатехин и некоторые из его производных. Киш предположил, что производные пирокатехина сперва дегидрируются кислородом воздуха до о-хинонов, которые потом уже в свою очередь разрушают аминокислоты. Если бы этот механизм был подтвержден, то катализ о-хинонами был бы сходен с катализом изатином. Однако этому противоречит тот факт, что резорцин также катализирует дегидрирование, хотя он не может образовать о-хинон. [c.49]

    Примечания. Предварительный электрофорез служит для отделения диаминокислот от углеводов и примесей аминокислот не основного характера. В отличпе от осаждения фосфорновольфрамовой кислотой электрофорез может быть проведен количественно. Электрофорез особенно полезен в тех случаях, когда гидролизат содержит большое количество пролина, который затрудняет выделение лизина в виде пикрата, пли содержит большое количеотво продуктов распада углеводов, которые препятствуют выделению аргинина и осаждению фосфовольфраматов диаминокислот. [c.43]

    В желудке белки перевариваются пепсином до высокомолекулярных продуктов распада — пептонов. В двенадцатиперстной кишке происходит более глубокое переваривание белков и пептонов под действием трипсинового комплекса ферментов поджелудочного сока. Переваривание до аминокислот ипростейших пептидов происходит в тонком кишечнике под влиянием пептидаз кишечного сока (э р е п с и н а). [c.158]


Смотреть страницы где упоминается термин Аминокислоты продукты распада: [c.38]    [c.379]    [c.403]    [c.133]    [c.97]    [c.547]    [c.62]    [c.196]    [c.39]    [c.593]    [c.268]    [c.144]    [c.344]    [c.94]   
Основы биохимии (1999) -- [ c.272 , c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Продукты распада



© 2025 chem21.info Реклама на сайте