Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислотные остатки инсулине

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]


    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Инсулин — гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний — сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистьк заболеваний и рака. Инсулин — небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочечного предшественника — препроинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пеп-тидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин. [c.132]


    Существенным подтверждением полипептидной теории строения белка является возможность синтеза чисто химическими методами полипептидов и белков с уже известным строением инсулина-51 аминокислотный остаток, лизоцима-129 аминокислотных остатков, рибонуклеазы -124 аминокислотных остатка . Синтезированные белки обладали аналогичными природным белкам физико-химическими свойствами и биологической активностью. [c.51]

    Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), а-цепи (141) и 3-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А-21 и В-30 аминокислотных остатков), образуется из своего предшественника-проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом  [c.57]

    Инсулин был впервые вьщелен из поджелудочной железы быка в 1921 г. Ф. Бантингом и Ч. Бестом. Он состоит из двух полипептидных цепей, соединенных двумя дисульфидными связями. Полипептидная цепь А содержит 21 аминокислотный остаток, а цепь В — 30 аминокислотных остатков, молеку- [c.164]

    Вирус табачной мозаики (ВТМ). Из всех вирусов наиболее хорошо изучен растительный вирус табачной мозаики. Тем не менее сведения, которыми мы располагаем в настояш,ее время, вероятно, еще далеко не достаточны для полного описания его строения. Физические исследования показали, что ВТМ представляет собой тонкий стержень длиной 3000 А и диаметром 150 А. Вес такой частицы равен 39- 10 . Из этого числа 5% приходится на РНК, константа седиментации которой равна 27S, а молекулярный вес 2,0 10 . Если бы цепь РНК вируса полностью вытянуть, она была бы в 10 раз длиннее вирусной частицы. Остальные 95% вируса приходятся на белок, который состоит из 2130 идентичных субъединиц. В состав каждой субъединицы, имеющей молекулярный вес 17 420, входит 158 аминокислот. Белок вируса табачной мозаики является третьим белком после инсулина и рибонуклеазы, для которого полностью установлена последовательность аминокислот. Каждая белковая субъединица представляет собой единую полипептидную цепь, на N-конце которой находится ацетилированный серии. Это один из редких случаев особой модификации N-конца полипептидной цепи. Различные штаммы этого вируса отличаются по аминокислотному составу белка. У всех исследованных штаммов белковая часть содержит только один остаток цистеина. В некоторых штаммах отсутствуют метионин и гистидин. [c.359]

    Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Молекула инсулина (мономер) состоит из двух полипептидных цепей, соединенных дисульфидными связями, и содержит 51 аминокислотный остаток. Мономер имеет мол. массу 6000, Цепь с Ы-концевым глицином, состоящую из 21 аминокислотного остатка, называют А-це-пью. В-цепь на М-конце имеет фенилаланин и содержит 30 аминокислотных остатков (рис. 63), [c.275]

    В отличие ох углеводов первичная структура белков строго специфична для каждого вида организмов. Так, гормон инсулин, построенный из 51 остатка а-аминокислот в виде двух цепей, соединенных дисульфидными мостиками, имеет неодинаковый состав у различных видов животных. Трехчленные звенья в определенном месте цепи А молекулы инсулина содержат следующие аминокислотные остатки у быка аланин—серир—валин у свиньи треонин—серин—изолейцин у лошади треонин—глицин—изолейцин у овцы аланин—глицин—валин у человека треонин—серин—изолейцин (на схеме 9 они отмечены звездочками). Различия наблюдаются также в С-концевом остатке В-цепи в инсулине человека Это остаток треонина, а в инсулине быка — остаток аланина. [c.512]


    Однако / нс-форма не имеет, по-видимому, широкого распространения в белках вследствие стерических (пространственных) препятствий. Число и последовательность аминокислот, соединенных друг с другом пептидными связями, характеризуют первичную структуру белка. Молекулярные веса белковых молекул колеблются от 6000 для инсулина до более миллиона. Инсулин представляет собой белок с крайне низким молекулярным весом однако его молекула содержит 51 аминокислотный остаток. Белок с молекулярным весом 100 ООО содержит приблизительно 900 аминокислотных остатков. Выяснение первичной структуры белка представляет, таким образом, очень трудную задачу. Но это не испугало Сенгера, который в конце второй мировой войны начал серию исследований, успешно завершившихся в 1954 г. полной расшифровкой первичной структуры инсулина. Успех Сенгера и его сотрудников был обусловлен тем, что сам Сенгер разработал метод анализа концевых амин-ных групп, а Мартин и Синг — методы выделения веществ с помощью распределительной хроматографии на бумаге. [c.27]

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые был установлен для белка инсулина. Молекула инсулина имеет молекулярный вес около 12 ООО. Она состоит из двух полипептидных цепей, причем одна цепь содержит 21 аминокислотный остаток, а другая 30. Последовательность аминокислотных остатков в короткой и длинной цепях была установлена в период 1945—1952 гг. английским биохимиком Ф. Сейджером (1918) и его сотрудниками. Две цепи в молекуле инсулина соединены между собой связями сера — сера, расположенными между половинами цистиновых остатков (табл. 24.1). В настоящее время последовательность аминокислотных остатков установлена методом Сейджера для альфа- и бета-цепей нормального гемоглобина взрослого человека и для многих других белков. Последовательность чередования аминокислот в бета-цепи гемоглобина А человека (146 аминокислотных остатков) можно записать следующим образом (концевая аминогруппа, или N-тepминaльнaя группа) Вал-Гис-Лей-Тре--Про-Глу- Гл у-Лиз-Сер-Ал а-В а л-Тре-Ал а -Л ей-Три -Гли- Л из -Вал - Асн-В ал--Асп-Глу-Вал-Гли-Гли-Глу-Ала-Лей-Гли-Арг-Лей-Лей-Вал-Вал-Тир-Про--Три-Тре-Глн- Арг-Фен-Фен -Глу-Сер-Фен -Гли-Асп -Лей-Сер-Тре-Про- Асп--Ал а-В ал -Мет-Гли -Асн-Про-Лиз-В ал - Лиз-Ал а-Гис-Гли-Лиз-Лиз-В ал-Лей--Гли-Ал а -Фен-Сер-Асп -Гли -Л ей-Ал а -Гис-Л ей-Асп -Асп -Л ей-Лиз-Гли-Тре--Фен-Ала-Тре-Лей-Сер-Глу-Лей-Гис-Цис-Асп-Лиз-Лей-Гис-Вал-Асп-Про--Глу-Асн-Фен -Арг-Л е й-Л ей-Гли-Асн -В ал -Лей-В ал-Цис-Вал-Л ей-Ал а-Гис--Гис-Фен-Гли-Лиз-Глу-Фен-Тре-Про-Про-Вал-Глн-Ала-Ала-Тир-Глн-Лиз--Вал-Вал-Ала-Гли-Вал-Ала-Асн-Ала-Лей-Ала-Гис-Лиз-Тир-Гис (концевая карбоксильная группа, или С-терминальная группа). Такая последовательность для альфа-цепи (141 остаток) в известной мере аналогична чередованию аминокислот в бета-цепи примерно 75 аминокислотных остатков занимают по существу те же места в цепях. Альфа-цепь гемоглобина гориллы отличается от аналогичной цепи гемоглобина человека тем, что в двух случаях аминокислотные остатки оказываются взаимозамещенными, а бета-цепи этих белков отличаются лишь одним замещением. Различие между гемоглобином лошади и гемоглобином человека заключается приблизительно в 18 замещениях в каждой цепи. Эти наблюдения и множество других такого рода данных для различных белков служат очень веским независимым доказательством теории эволюционного развития. [c.681]

    Гамов попытался проверить правильность своего кода, сопоставив возможность сочетания ромбов с известной первичной структурой инсулина и адренокортикотропина. При этом возникли неразрешимые противоречия. Дальнейшие исследования показали, что никакие перекрывающиеся коды нельзя согласовать с опытом. Наличие перекрытий в кодонах может выражаться в корреляциях между соседними аминокислотными остатками. Иными словами, некоторые парные сочетания остатков должны быть запрещены. Анализ первичных структур белкои показал, что таких корреляций нет —любой остаток может следовать за любым, хотя разные остатки встречаются с различными частотами [4, 5]. Можно, однако, представить себе перекрывающиеся нуклеотидные коды, допускающие любую последовательность аминокислот [6]. [c.555]

    Многие из гормонов человеческого организма являются полипептидами. Наиболее известный из них, вероятно, инсулин, молекула которого содержит 51 аминокислотный остаток. [c.79]

    Один из первых белков, первичная структура которого была установлена в 1954 г., — гормон инсулин (регулирует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 21 аминокислотный остаток, в другой — 30), Мг (инсулина) = 5700. [c.704]

    Молекула инсулина состоит из двух полипептидных цепей Л-цепь — 21 аминокислотный остаток, 5-цепь — 30 аминокислотных остатков. Молекулу стабилизируют две межцепочечные дисульфидные связи А1-Ю, А2 -В 9) и одна связь в пределах цепи А [c.388]

    Особый интерес представляют данные по облучению инсулина, так как точно известна последовательность аминокислот в этом белке (см. рис. VI- ). В состав молекулы инсулина входят 17 разных аминокислот, причем всего в молекуле имеется 51 аминокислотный остаток. Из этого 51 аминокислотного звена лишь три содержат серу (цистиновые звенья молекулы белка). Два из этих трех цистиновых остатков образуют дисульфидные мостики между двумя полипептидными цепями молекулы, а третий — внутрицепной дисульфидный мостик в одной из двух цепей. Между цистиновыми звеньями в одной из полипептидных ценей инсулина расположено 11 других аминокислотных остатков, причем восемь из них — остатки восьми разных аминокислот. В другой цепи между двумя фрагментами цистина находится восемь разных аминокислотных звеньев. Несмотря на это, спектр ЭПР облученного рентгеновскими лучами инсулина, как обнаружил Горди, почти идентичен спектру ЭПР облученного цистина. [c.432]

    Инсулин выделен из препаратов поджелудочной железы в чистом кристаллическом виде. Это простой белок, молекулярный вес которого 12 ОО О. Однако имеется доказательство того, что минимальный вес инсулина, соответствующий наименьшей элементарной частице, которая объединяется ковалентными связями, — 6000 (Нейрат, Сангер). Молекула инсулина построена из 16 аминокислот (нет триптофана, метионина и оксипролина) и содержит 51 аминокислотный остаток, если молекулярный вес принять равным 6000. Эти аминокислоты образуют две полипептидные цепи, так как удалось обнаружить два N-концевых аминокислотных остатка (фенилаланин и глицин) и два С-концевых аминокислотных остатка (аланин и аспарагин), причем полипептидные цепи соединяются друг с другом поперечными мостиками, образованными дисульфидными группами. Фенилала-ниновая цепь содержит 30 аминокислотных остатков, а глициновая — 21. В настоящее время последовательность соединения аминокислот в молекуле инсулина полностью расшифрована. Схематически структуру инсулина [c.187]

    Мономерный инсулин состоит из 51 аминокислотного остатка и имеет две цепи короткую (А-цепь), содержащую 21 аминокислотный остаток, и длинную (В-цепь), состоящую из 30 аминокислотных остатков. А- и В-це- [c.298]

    Ответ. Первая проблема состоит в том, что, прежде чем синтезировать белки, надо расшифровать их первичную структуру и определить пространственную конфигурацию. Эта задача решена только для самых простых белков. Первый белок, у которого была расшифрована первичная структура, — гормон инсулин. Это простой белок, состоящий из двух полипептидных цепей (одна цепь содержит 21 аминокислотный остаток, другая — 30 остатков), соединенных двумя дисульфидными мостиками. На установление его структуры потребовалось 10 лет. [c.125]

    Возможности спектроскопии флуоресценции как средства исследования макромолекул в растворе впервые были продемонстрированы при изучении растворов белков [548, 549]. Три из присутствующих в белках аминокислоты флуоресцируют максимум спектра испускания для фенилаланина наблюдается при 282 мц, для тирозина — при 303 м л и для триптофана — при 348 м х, [550]. Спектры испускания простых пептидов весьма напоминают спектры свободных аминокислот, однако в белках они резко изменяются за счет безызлучательного перехода энергии возбуждения между аминокислотными остатками. Известно, что такие процессы чрезвычайно эффективны на расстояниях до 40 А [551]. Вследствие этого перехода энергии флуоресценция фенилаланина может наблюдаться лишь в отсутствие тирозина и триптофана (т. е. в желатине), а флуоресценция тирозина обнаруживается только в отсутствие триптофана (т. е. в инсулине), в то время как большинство белков имеет спектры испускания, приписываемые остаткам триптофана. Эти спектры испускания значительно изменяются для нативных белков, однако они становятся идентичными при денатурации белков в 8 Ai растворе мочевины [549] этот факт указывает на то, что характер спектра и квантовый выход флуоресценции подвержены изменениям, обусловленным как природой среды, окружающей остаток триптофана, так и конформационными превращениями полипептидного хребта, к которому присоединена флуоресцирующая боковая цепь. [c.188]

    L-изолейцин заменен на L-фенилаланин, а ь-лейцин — либо на L-лизин (в вазопрессине свиньи), либо на ь-аргинин (в вазо-прессине быка). Первичная структура инсулина быка, который содержит 51 аминокислотный остаток, показана ниже. Конец пептидной цепи, содержащий концевую аминогруппу, изображен символом Н-(например, H-Gly- в схеме означает H2N H2 O—), а конец, содержащий карбоновую кислоту, обозначен ОН (-Ala-ОН означает —NH H(СНз)СО2Н). [c.299]

    В настоящее время выяснение первичной структуры белков является вопросом времени и технического оснащения лабораторий. Полностью выяснена первичная структура многих природных белков и прежде всего инсулина, содержащего 51 аминокислотный остаток [Сэнджер Ф., 1954]. Более крупным белком с выясненной первичной структурой оказался иммуноглобулин, в четырех полипептидных цепях которого насчитывается 1300 аминокислотных остатков. За эту работу Дж. Эдельман и Р. Портер были удостоены Нобелевской премии (1972). [c.56]

    Определение числа и природы С- и М-концевых аминокислотных остатков позволило добиться существенных успехов в выяснении структуры некоторых белков. Инсулин оказался первым белком, для которого полностью установлен порядок расположения всех аминокислот [102—107]. Сангер и его сотрудники путем окисления инсулина надмуравьиной кислотой получили два основных продукта, которые оказались пептидами, содержащими цистеиновую кислоту и состоящими из 21 и соответственно 30 аминокислотных остатков. Более короткая цепь (по обозначению Сангера — пептид А ) имеет Ы-концевой остаток глицина и С-концевой остаток аспарагина. В более длинной цепи (пептид В ) Ы-концевой аминокислотой оказался фенилаланин, а на С-конце цепи находится аланин. С помощью остроумных приемов, заключающихся в широком использовании метода получения динитрофенильных производных при помощи [c.27]

    Основные научные работы посвящены химии белка. Изучал (с 1945) структуру инсулина. Разработал динитрофторбензольный метод идентификации концевых аминогрупп в пептидах, с помощью которого установил природу и последовательность чередования аминогрупп в инсулине, расшифровал его строение (1949—1954). Установил, что инсулин имеет общую формулу 254H337N65O75S6, три сульфидных мостика и состоит из двух цепей цепи А, содержащей 21 аминокислотный остаток, и цепи В, содержащей 30 аминокислотных остатков. Эти работы послужили основой для синтетического получения инсулина и других гормо- [c.457]

    Ф. Сенгер расшифровал строение инсулпна. Установил, что инсулин имеет общую формулу С254Нзз7Мб50753б, три сульфидных мостика и состоит из двух цепей цепи А, содержащей 21 аминокислотный остаток, и цепи В, содержащей 30 аминокислотиых остатков. [c.686]

    Порядок, в котором расположены аминокислотные остатки в нолинеи-тидной цепи, сравнительно недавно был установлен для инсулина. Молекулярный вес инсулина около 12 ООО. Молекула инсулина состоит из четырех полинептидных цепей, две из которых содержат 21 аминокислотный остаток, а две другие — 30. Последовательность аминокислот в коротких и длинных цепях была установлена в 1945—1952 гг. английским биохимиком Санджером и его сотрудниками. Четыре цепи в молекуле инсулина соединены между собой связями между атомами серы, соединяющими обе половины цистиновых остатков (см. табл. 34). [c.487]

    Сэнгером при установлении аминокислотной последовательности бьгаьего инсулина эта последовательность приведена на рис. 6-11. Бычий инсулин имеет молекулярную массу около 5700. Его молекула состоит из двух полипептидных цепей А-цепи, содержащей 21 аминокислотный остаток, и В-цепи, содержащей 30 аминокислотных остатков. Эти две цепи соединены двумя дисульфидными (—8—8—поперечными связями, причем в одной из цепей имеется еще одна внутренняя дисульфидная связь. При определении последовательности вначале были разорваны поперечные дисульфидные связи, что позволило разделить цепи. Для этой цели Сэнгер использовал в качестве окислителя надмуравьиную кислоту, которая расщепляет каждый остаток цистина на два остатка цистеи-новой кислоты (рис. 6-12), по одному в каждой цепи. После разделения цепей в них были определены аминокислотные последовательности. При этом не удалось обнаружить никаких закономерностей в расположении какой-либо аминокислоты, никаких периодических повторений того или иного аминокислотного остатка. Более того, последовательности двух цепей оказались совершенно разными. [c.153]

    Сэнджер и сотр. [1907, 1908] установили строение бычьего инсулина в 1945—1955 гг. Молекулярный вес инсулина (ср. рис. 95) равен 5733 его молекула состоит из двух пептидных цепей — цепи А (21 аминокислотный остаток) и цепи В (30 аминокислотных остатков). Обе цепи связаны между собой двумя дисульфидными мостиками. В цепи А имеется еще один дисуль- [c.470]

    Химическая природа. Инсулин является белком (молекулярный вес 6000) Это первый белковый гормон, химическая природа которого расшифрована. Молекула инсулина построена из 2 полипептидных цепей — мономеров, из которых цепь А содержит 21 аминонислотный остаток, а цепь Б—30 аминокислотных остатков. Полипептидные цепи связаны между собой дисульфидными мостиками за счет сульфгид-рильных групп молекул цистеина. Расположение аминокислот в полипептидных цепях А и Б полностью расшифровано Сэнджером, а в 1963 г. другими авторами осуществлен синтез инсулина. [c.95]

    Осп. работы посвящены химии белка. Изучал (с 1945) структуру инсулина. Разработал динитро-фторбепзольный метод идентификации концевых аминогрупп в пептидах, с помощью которого установил природу и последовательность чередования аминогрупп в инсулине, расшифровал его строение (1949—1954). Установил, что инсулин имеет общую формулу Сш Н ) )7 N6507580, три сульфидных мостика и состоит из двух цепей цепи А, содержащей 21 аминокислотных остаток, и цепи В, содержащей 30 аминокислотных остатков, Эти работы послужили основой для синт, получения инсулина и др. гормонов. Предложил (1965) метить РНК и ДНК, предназначенные для структурных исследований, радиоактивным изотопом фосфора Р, что позволило осуществлять работы с чрезвычайно малым колич-вом материала— 10 г. Установил структуру 58 РНК (120 оснований 1967) и ДНК фага ФХ174 (5375 основа- [c.403]

    Инсулин — полипептид, состоящий из 2 цепей, включающих 51 аминокислотный остаток. А-цепь содержит 21 аминокислотный остаток, В-цепь — 30. Цепи соединены двумя би-сульфидными мостиками, третий бисульфидный мостик содержится в цепи А. Инсулин относят к анаболическим гормонам, влияющим на ассимиляцию углеводов, белков, жиров. Механизм действия инсулина на углеводный обмен включает облегчение транспорта глюкозы через клеточные мембраны, активацию гексокиназы, способствующей превращению глюкозы в глю-козо-6-фосфат, активацию гликогенсинтетазы (стимуляция гликогеногенеза), снятие ингибирующего действия на секреторные клетки гормонов гипофиза. Инсулин также стимулирует синтез белков, снижает содержание свободных жирных кислот в крови и депонирование ТГ в жировых клетках. [c.396]

    Инсулин состоит из 51 аминокислотного остатка, которые составляют две цепи цепь А (21 остаток), цепь В (30 остатков). Обе цепи связаны двумя дисульфидными мостиками. Цепь А содержит третий дисульфидный мостик, замыкающий петлю, состоящую -из шести аминокислотных остатков. Последовательность аминокислот в инсулине определена [78] и проведено его рентгеноструктурное исследование [79]. Цепь А имеет сильно свернутую структуру с короткими квазиспиральными участками. Участки а-опиралей имеются в цепи В между дисульфидными мостиками. Низкая молекулярная масса (5780), казалось бы, делает инсулин привлекательным объектом для исследования с помощью ЯМР, тем не менее еще нет публикаций об изучении этим методом нативного белка. Отчасти, видимо, это объясняется тем, что в нем не выделен активный центр . Гормональная функция инсулина — способность понижать содержание сахара в крови —хорошо известна, но непонятна с химической точки зрения. Инсулин обладает ярко выраженной способностью образовывать полимеры. Димер и гексамер хорошо охарактеризованы [79]. В димере наблюдается интересное окружение (по типу ящика ) остатков Тир-26 (В) и Фен-24 (В), а также остатков во второй входящей в димер молекуле, связанных с двумя первыми осью симметрии второго порядка. Это явление представляет несомненный интерес для изучения на частоте 220 МГц. [c.384]

    Аминокислотные остатки, примыкающие к Ы-концевой аминокислоте, можно определить, используя динитрофторбензольный метод (ДНФ-метод). При полном гидролизе ДНФ-полипентида образуется ДНФ-производное М-концевой аминокислоты, при частичном же гидролизе получается смесь ДНФ-пептидов, которые можно разделить и гидролизовать, а затем идентифицировать образовавшиеся аминокислоты. Например, Сенгеру удалось окислить инсулин надмуравьиной кислотой и выделить две фракции, в одной из которых (фракция В) содержался Ы-концевой остаток фенилаланина. В результате частичного гидролиза ДНФ-фенилаланиловой цепи был получен ряд ДНФ-пептидов из этих пептидов четыре были [c.29]

    Над выяснением структурных формул обычных белков работают в настоящее время во многих лабораториях. Удалось, например, полностью установить структуру белка инсулина. Этот белок имеет молекулярный вес 5733, и его макромолекулы состоят из двух коротких цепей, соединенных друг с другом дисульфид-ными мостиками, как это показано на рис. 1. Одна из полипептидных цепей содержит 21, а другая 30 аминокислотных остатков (термин остаток относится к структурному звену —МН—СНН—СО—). Порядок чередования остатков был установлен Сэнджером  [c.17]

    Успехи в разработке методов изучения белков, в особенности хроматографического метода, позволили Сэнгеру установить строение инсулина. Этому способствовала также обнаруженная им реакция, о которой говорилось выше динитрофе-нильная группа (ДНФ) способна присоединяться к свободным аминогруппам с образованием желтого соединения. ДНФ-группа остается присоединенной к аминокислотному остатку даже после гидролиза, который проводят с целью расш епления пептидов это дает возможность идентифицировать концевой остаток аминокислоты. Применив ДНФ-ме-тод, Сэнгер первым показал, что молекула инсулина состоит из двух цепочек, которые удерживаются одна около другой дисульфидными (3 — 8) связями остатков цистина. Эти связи можно разрушить мягким окислением. Таким способом были получены обе ненарушенные цепочки было доказано, что в одной из них содержится 21 аминокислота, а в другой — 30. Каждая цепочка была подвергнута кислотному гидролизу с образованием небольших фрагментов, аминокислоты которых были определены хроматографичрски. Концевые аминокислоты каждого фрагмента были идентифицированы ДНФ-методом. Постепенно расщепляя цепочки на множество мелких пептидов и определяя содержащиеся в них аминокислоты и последовательность их расположения, Сэнгеру ну- [c.319]


Смотреть страницы где упоминается термин Аминокислотные остатки инсулине: [c.555]    [c.395]    [c.217]    [c.782]    [c.335]    [c.335]    [c.395]    [c.217]    [c.29]   
Биохимия Т.3 Изд.2 (1985) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулин доступность аминокислотных остатков

Инсулинома



© 2025 chem21.info Реклама на сайте