Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перекись формальдегида

    НОСНз-ОО-СНаОН НОСН-ОО-СНОН 1 1 СНз СНз НОСН-ОО-СНОН Перекись формальдегида Перекись ацетальдегида Перекись хлораля 51 100 122 — — [c.207]

    Метильный радикал может либо отнять водород с образованием метана, либо вступить в реакцию с кислородом с образованием формальдегида, либо, наконец, образовать метанол через перекись  [c.334]


    Явление, аналогичное предпламенному окислению, изучалось исследованием продуктов, выбрасываемых из автомобильного двигателя, не имеюш,его зажигания [116, 131, 132]. Если повысить жесткость режима за счет увеличения степени сжатия, то можно получить перекиси, альдегиды и кетоны при максимальной температуре рабочего цикла 340° С, перекись водорода и формальдегид — при температурах на несколько градусов выше, а холодное пламя — при еще более высокой температуре. Предполагают, что важную роль в детонации играет перекись водорода, потому что двигатель, использующий в качестве топлива водород, детонирует [115, 146]. [c.408]

    Началом цепи является активное соударение молекул метана и кислорода, в результате которого образуются два радикала СНз и Нб>. В последующих стадиях принимают участие радикалы типа ОН и НСО и относительно стабильные промежуточные продукты — формальдегид и перекись водорода. [c.54]

    Коллоидные растворы можно получить путем восстановления металлов из их соединений. В качестве восстановителей чаще всего используют формальдегид, этиловый спирт, перекись водорода, танин, гидрохинон и др. [c.212]

    Среди продуктов окисления каучуков обнаружены как летучие, так и нелетучие вещества. В числе летучих продуктов окисления натурального каучука найдены углекислота, вода, перекись водорода, формальдегид, водород. В летучих продуктах окисления дивинилового каучука установлено наличие воды, формальдегида, муравьиной кислоты . [c.61]

    При хранении кристаллы эргокальциферола постепенно разрушаются под влиянием кислорода воздуха, влаги и света под вакуумом в ампулах из оранжевого стекла на холоду в течение 9 месяцев не было заметно признаков разложения [15]. Масляные эмульсии и водно-коллоидные растворы эргокальциферола нестойки [16]. В нейтральной и щелочной среде витамин О2 стоек к нагреванию в кислой среде разрушается [17] при омылении жиров не разрушается.-Перекись водорода, сернистый ангидрид, формальдегид разрушают витамин О2 [18]. Сложные эфиры эргокальциферола не обладают антирахитической активностью. [c.298]

    Покрытия на основе ХСПЭ, отвержденные ароматическими диаминами, обладают высокой стойкостью в газообразных и жидких агрессивных средах. Так, в покрытиях по бетону образцы не изменили внешнего вида после выдержки в течение 180 сут в парах азотной, соляной, серной и уксусной кислот [5, 14]. В покрытиях по металлу образцы показали высокую стойкость в агрессивных средах, но только при комнатной температуре. Это связано, по-видимому, с ухудшением адгезии покрытия к металлу при повышении температуры [25, 26] и значительным увеличением скорости диффузии агрессивных сред (в особенности воды) при повышенной температуре. Тем не менее, при 20 °С покрытия на основе ХСПЭ, отвержденные ароматическими диаминами, стойки в таких средах, как 20%-ные соляная и азотная кислоты, 80%-ная и 60%-ная серная кислота, 30%-ная перекись водорода, 40%-ная плавиковая кислота, 85%-ная фосфорная кислота, 40%-ный и 10%-ный раствор едкого натра, насыщенный раствор перманганата калия, изопропиловый спирт, 10%-ная уксусная кислота и 37%-ный формальдегид [26]. Покрытия на основе ХСПЭ, отвержденные ж-фенилендиамином, обладают хорошей атмосферостойкостью, превосходя в этом отношении другие композиции на основе ХСПЭ. [c.166]


    Непосредственное превращение этилена в формальдегид при нагревании с кислородом стало известно уже давно благодаря исследованиям Шутценбергера (1875 г.), Вильштеттера, Бона, Уилера и их шкоп. Наилучшие выходы получаются при 550—600° и больших объемных скоростях газов. Одновременно с формальдегидом образуются также следы ацетальдегида и уксусной кислоты. Ленер [1] подробно исследовал продукты окисления этилена молекулярным кислородом. Окисление проводилось в интервале 300—500° при длительной реакции (в проточной системе без рециркуляции) и при кратковременной реакции (в системе с рециркуляцией). В жидких продуктах реакции, полученных после конденсации, содержались окись этилена, этиленгликоль, глиоксаль, ацетальдегид, формальдегид, муравьиная кислота и вода. В опытах с рециркуляцией основными продуктами являлись окись этилена и формальдегид. При работе на более крупной лабораторной установке в значительном количестве была выделена перекись формальдегида НОСНзООСНцОН. Последняя могла быть разложена на водород и муравьиную кислоту, которые присутствуют в продуктах окисления этилена  [c.157]

    Были детально исследованы продукты окисления этилена кислородом. Процесс окисления проводили при длительном времени контакта (в проточной системе без рециркуляции) и при непродолжительном времени контакта (в системе с рециркуляцией) [1] температуру поддерживали равной 300— 500°С. Полученные продукты состояли из окиси этилена, этиленгликоля, гли-оксаля, уксусного альдегида, формальдегида, муравьиной кислоты и воды. В опытах с рециркуляцией основными продуктами являлись окись этилена и формальдегид. При работе на более крупной лабораторной установке в значительном количестве была выделена перекись формальдегида 02(СНа0Н)2, ди(оксиметил) пероксид. Последняя может разлагаться на муравьиную кислоту и водород по реакции [c.142]

    Перекись водорода от формальдегида, ацетальдегида и пролионо-вого альдегида можно отделить тремя способами, из которых наиболее удовлетворительным оказался способ выделения гидроперекисей в виде перекиси кальция. [c.442]

    Как установлено, обслуживающим персоналом было принято решение закачать в сборник формалин, которого оставалось в сборнике всего 400 л. Около цеха на поддонах стояло 18 баллонов с формалином с бирками о проведенном анализе. На четырех баллонах красной масляной краской было написано Н2О2 (пергидроль), а сверху над этой надписью приклеены этикетки с надписью Формалин . После того как в сборник насосом было загружено содержимое девяти баллонов, произошел взрыв с выбросом реакционной массы в производственное по.мещение. Лабораторный анализ показал, что в четырех баллонах находилась все-таки перекись водорода. Взаимодействие перекиси водорода с формалином и привело к взрыву. Авария произошла вследствие нарушений правил приемки и хранения сырья. Лабораторией цеха не проводился анализ всего поступающего в цех сырья, не проводилась проверка сырья и на идентичность. Формалин проверяли только на процентное содержание формальдегида. В сопроводительных документах на сырье не были указаны партия, номер анализа и дата его проведения, масса и др. Баллоны с расфасованными реактивами не были опломбированы. Степень чистоты оборотной тары, поступающей от предприятия на базу, не проверялась оборотная тара поступала неопломбирован-ной, без документа, гарантирующего чистоту тары. На базе не была разработана инструкция по проверке чистоты тары. [c.142]

    Фуджимото [19] получил, пропуская смесь двух частей метана с ОДНОЙ частью кислорода через кистевой искровой разряд, кроме формальдегида и метанола, перекись водорода. Одновременно были также получены значительные количества водорода, поэтому невозможно определить является ли перекись первичным продуктом окисления метана или она образовалась при окислении молекулярного водорода. Перекись водорода была выделена в виде продукта присоединения ее к формальдегиду — перекиси диоксидиметила. Последняя разлагается при нагревании на муравьиную кислоту и водород. [c.324]

    Продуктами окпсления этплепа [8] (рнс. 5) являются ацетальдегид, окись этилена, формальдегид, перекись, муравьиная кислота, окислы углерода и вода. В некоторых условиях констатировалось также образование глиоксаля и диоксиметилперекисп. Из рис. 5 видно, что формальдегид и муравьиная кислота достигают максимальных количеств раньше, чем заканчивается прирост давления, дости кепио же максимальных количеств перекисей предшествует максимуму формальдегида. После этого перекиси очень скоро (еще до окончательного израсходования кислорода) полностью исчезают. [c.19]

    Необходимо, однако, подчеркнуть, что наличие перекиси водорода среди продуктов углеводородного окисления дает возможность предположить образование оксиалкилперекисей и другим путем — взаимодействием перекиси водорода с альдегидами (например, формальдегидом). Именно к такому заключению пришли Гаррис и Эггертоп [35] в 1937 г. при изучении окисления пропана (см. стр. 143). Но в таком случае органическая перекись (оксиалкилнерекись) является уже продуктом вторичного происхон дения п ее наличие среди веществ, получаемых при окислении углеводорода, не может являться аргументом в пользу перекисной схемы. [c.32]


    Образование этой перекиси, однако, происходит, по мнению авторов, не в зоне реакции, а уже при выбросе смеси из реакционного сосуда (или в конденсате) взаимодействием формальдегида с перекисью водорода. Основанием для такого заключения явился тот факт, что содержание водорода в реакционном газе не увеличивается при выпуске последнего из сосуда через трубки из натриевого стекла, хотя в этом случае диоксидиметилперекись должна была бы разлояшться с образованием водорода. В общем, авторы приходят к выводу, что в ходе изученного газофазного окисления пропана в зоне реакции образуется перекись водорода и, может быть, в незначительном количестве перекись ацетила. Никаких доказательств образования алкилгидроперекисей найдено не было. [c.143]

    Вторая стадия начинается цепным взрывом накопившихся органических перекисей. Такой характер этого взрыва, происходящего при минимальном критическом давлении перекпси, отвечающем пределу ее взрывного распада, означает, что превращению подвергнется не вся накопленная перекись. Взрывной распад охватит только то количество перекиси, которое создает в условиях эксперимента превышение ее парциального давления над критическим давлением на пределе (см. стр. 54—55). Так как это количество очень невелико, то при его распаде выделится лишь небольшое количество тепла, которое вряд ли сможет существенно изменить изотермические условия процесса. В результате цепного взрыва, однако, создается лавина свободных радикалов, которые на дальнейшем протя-женип этой второй стадии вовлекают основную массу исходного углеводорода в неполное окисление с образованием главным образом промежуточных продуктов — перекисей, альдегидов, кислот. В процессе такого неполного окисления образуется также возбужденный формальдегид, обусловливающий холодпопламенную радиацию. [c.174]

    В случае формальдегида расиад нерекисного радикала НСООО дол-жег1 привести к возникновению либо СОд и (ЗН, либо СО и НО2. Нахождение среди иродуктов окисленпя формальдегида перекиси водорода, образующейся из НО2, могло бы явиться подтверждением такого распада. Насколько нам известно, перекись водорода, однако, никогда не упомн-наецся в числе веществ, получающихся при окислении формальдегида. [c.251]

    Такое сходство в поведении анализируемой иерекиси с диоксиметил-перекисью приводит авторов к окончательному выводу о том, что последняя является единственной органической перекисью, содержащейся в незначительных количествах в продуктах окисления пропана. Так как эта перекись легко образуется в растворе копдепсацией формальдегида с перекисью водорода [101] и так как выше 190 она подвергается распаду [102], то естественнее всего предположить, что в зоне реакции окпсле-нпя пропана возникает только перекись водорода, а диоксиметилиерекись образуется взаимодействием перекиси водорода с формальдегидом после выпуска продуктов из реакционного сосуда. [c.263]

    Далее, вызывает возражения и тримолекулярная реакция Т. Дело в том, что из-за значительно большей концентрации углеводорода и кислорода по сравнению с альдегидом гораздо более вероятна реакция 8, приводящая к образованию радикала НОа- При высоких температурах окисления метана радикал НО2 будет реагировать с метаном и формальдегидом. Это, как мы видим, совершенно пе учтено в схеме, хотя в продуктах окисленпя метана перекись водорода действительно обнаружена. Реакция 7 мало вероятна еще и потому, что она слишком сложна, чтобы протекать в один элементарный акт (рвутся четыре связи, образуются 3 связи и кроме того углеродный атом переходит из 4-х в 2-валеитпое состояние). [c.280]

    Несомненно, что органическая перекись, в случае ее образования даже и в незначительных количествах, должна проявлять разветвляющее действие в реакции окисления углеводородов. Это следует из целого ряда хорошо известных фактов инициирующего действия органических перекисей в реакциях полимеризации [34], термического распада [35], да и самого углеводородного окисления [36]. Такая функция органических перекисей получает свое естественное объяснение в относительно легкой способности этих веществ распадаться по связи 0—0 с образованием свободных радикалов. В таком случае тот твердо установленный факт, что нри газофазном окислении углеводородов (при температурах от 250— 300° и до температур, отвечающих нулевому значению температурного коэффициента скорости) разветвляющим агентом является высший альдегид, а не органическая перекись (см. стр. 253), может привести к заключению, что в ходе этой реакции практически полностью отсутствует возможность образования таких перекисей. Подобное заключение получает подтверждение в данных Нокса и Норриша [37] (см. стр. 262— 263), настаивающих на том, что единственная найденная ими при окисле НИИ пропана органическая перекись представляет собой диоксиметил-перекись, которая образуется ые в зоне реакции, а уже после отбора смеси в растворе при взаимодействии формальдегида с перекисью водорода. Такое утверждение о полном отсутствии органических нерекисей в реакционной зоне вступает, однако, в противоречие со сложившимся за последние 20 лет представлением о наличии в ходе газофазного окисления углеводородов конкуренции двух возможных реакций перекисного радикала КОа  [c.332]

    В связи с этим следует напомнить, что использование тщательно отработанной полярографической методики, дающей возможность различать органические перекиси в их смеси с перекисью водорода, привело Поляк и Штерна к заключению о том, что в ходе окисления углеводородов, протекающего при температурах 300° и выше, образуются только незначительные количества алкильной перекиси. Применив тот же полярографический метод и использовав еще данные, полученные при изучении скоростей взаимодействия различных перекисей с KJ, Норриш пришел к выводу, что эти незначительные количества органической нерекиси представляют собой оксиалкильную перекись (диоксиметилиерекись), возникновение которой можно представить себе, как результат коиденсации формальдегида с перекисью водорода, притом не в реакционной зоне, а уже после выброса смеси, в растворе. [c.352]

    Формальдегид окисляется далее по цепному механизму с участием радикала НО2. Перекись водорода образуется, вероятно, при реакции НОо с этиденом. Взаимодействие перекиси водорода с формальдегидом приводит к образованию диоксиметилперекисп  [c.369]

    Эта реакция была изучена Л. И. Авраменко и Р. В. Лоренцо [16]. Ее константа скорости к = 1,8-10- Те-шощт мoл секг . Выше мы видели что эту реакцию Льюис и Эльбе ввели в схему окислепия этилена. Согласно этим авторам, радикал СзНз присоединяет далее кислород, получающийся перекисный радикал взаимодействием с этиленом превращается в соответствующую перекись. Последняя распадается, давая две молекулы формальдегида. Этот путь, следовательно, также приводит к образованию формальдегида и притом без присоединения свободного радикала (ОН) по месту двойной связи. На этом пути, правда, не получается метильный радикал. [c.374]

    Если перекись во юрода и формальдегид содержат примеси кислоты, то ко1и-чество ее при дальнейшем вычис1ении должно быть принято во внимание. [c.51]

    Основное время следует уделить практическому приготовлению еле-дующих растворов калиция хлорида, медленно растворяющихся препара- тов (левомицетин, магния сульфат, натрпя тетраборат, борная кислота, меди сульфат, свинца ацетат, железа сульфат), йода, ртути дийодида,, окислителей (серебра нитрат, калия перманганат), а также группе растворов, в состав которой входит перекись водорода, формальдегид, жидкость Бурова, хлористоводородная кислота, уксусная кислота. При приготовлении последней группы растворов особое внимание обращают на правила расчета количеств указанных веществ в растворе в зависимости от названия вещества в лекарственной прописи. [c.425]

    Ото соединение может существовать также и в полимерной форме. l ii ui05KeHiie водой дало бензальдегид, формальдегид и перекись 1К1ДОрОДО. [c.179]

    Иодометрическое определение ртути в солях Hg(II). Чаще всего восстанавливают соли Hg(II) до металлической ртути в щелочных растворах соответствующими восстановителями, которые не должны реагировать с иодом. Затем прибавляют раствор иода в присутствии иодида калия для перевода металлической ртути в HgJ4 . Избыток иода оттитровывают тиосульфатом в присутствии крахмала. Восстановителями могут быть формальдегид или перекись водорода [755, стр. 398]. В работе [684] показано, что быстрое растворение ртути происходит тогда, когда в растворе присутствует желатин, действующий как защитный коллоид. Можно использовать и восстановители, которые реагируют с раствором иода, по при этом полученную металлическую ртуть необходимо отделить от раствора фильтрованием или декантацией. Далее ртуть можно определить иодометрически. Для восстаповления ртути и ее соединений можно использовать отмеренные количества восстановителей, избыток которых затем оттитровывают также иодометрически. [c.88]

    Вероятно, в такой форме перекись не способна образовать окись олефина даже при соударении с активированным этиленом. Этим же объясняется отсутствие активности у диалкилпере-кисей по отношению к олефинам, которые гидроперекисями хорошо окисляются в а-окиси (метод Прилежаева). Циклическая перекись при соударении со стенкой образует промежуточный бирадикал—диметиленпероксид, который превращается в формальдегид  [c.204]

    В отличие от реакции окисления изобутана, направленной п сторону образования перекисей, было найдено, что окисление и юпана и бутана (отношение углеводорода к кислороду 9 1, температура около 450°С, время контакта — 4 сек) приводит к получению смеси продуктов, содержащей органические перекиси, перекись водорода, альдегиды, спирты, окись и двуокись углерода, воду, олефины и водород . Органические перекиси в этом случае состоят, вероятнее всего, йз оксигидроперекисей и диоксиперекисей, образующихся в результате взаимодействия 1 рисутствующих в окисляемой среде альдегидов (например, формальдегида) и перекиси водорода. В более поздней работе описан способ превращения этана в гидроперекись путем окисления при 10—80° С под действием ультрафиолетового излучения в присутствии паров ртути, цинка или кадмия в качестве [c.20]


Смотреть страницы где упоминается термин Перекись формальдегида: [c.193]    [c.386]    [c.512]    [c.374]    [c.31]    [c.251]    [c.262]    [c.369]    [c.450]    [c.484]    [c.41]    [c.353]    [c.353]    [c.353]    [c.107]    [c.261]    [c.196]   
Химическая переработка нефти (1952) -- [ c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте