Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода, вязкость в зависимости от температуры

    ДИНАМИЧЕСКАЯ 1) И КИНЕМАТИЧЕСКАЯ ВЯЗКОСТЬ ВОДЫ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ [c.987]

    Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. На рис. 68 представлена зависимость температур плавления и кипения в ряду Н2О—НгЗ—НгЗе—НгТе от молекулярной массы соединений. В рассматриваемом ряду с ростом молекулярной массы обе характеристики закономерно увеличиваются. Резкое отличие свойств воды от свойств ее аналогов обусловлено увеличением средней молекулярной массы агрегатов (Н20) за счет ассоциации молекул Н2О вследствие образования водородных связей. Если бы вода не была ассоциированной жидкостью, она имела бы температуру плавления не [c.140]


    Основным источником обводнения мазутов является разогрев их острым паром, при сливе из железнодорожных цистерн и нефтеналивных барж в зимнее время. В результате маловязкие мазуты [22, 23] обводняются до 4— 12%, а высоковязкие топочные [21, 24] мазуты — до 20—30%, в зависимости от температуры мазута и воздуха, вязкости мазута, температуры и давления пара. Обводнение мазутных зачисток при полной зачистке железнодорожных цистерн, нефтяных барж и емкостей от остатков доходит [24] до 50—75%. При использовании для зачисток с помощью гидромонитора горячей воды обводненность мазута доходит [25] до 80%. [c.257]

    Вязкость. Вязкость пластовой воды является одним из существенных параметров при решении вопросов, связанных с разработкой нефтяных месторождений. Основным фактором, влияющим на вязкость воды в пластовых условиях, является температура. Проведенные исследования показали, что растворенные в воде газы не оказывают существенного влияния на ее вязкость, содержание солей в воде несколько повышает ее, но не оказывает определяющего влияния на ее величину. Зависимость между вязкостью воды и ее температурой представлена на рис. 21. [c.166]

    Графические методы, используемые для экстраполяции и интерполяции значений вязкости жидкости, основываются на подобии физико-химических свойств веществ. Например, существует прямолинейная зависимость между температурами и в, при которых две жидкости А и В имеют одинаковую вязкость (правило Портера). Если известны значения хотя бы двух вязкостей жидкости А (jii и нг) при температурах ai и а2, а из таблиц вязкости эталонной жидкости В (например, воды) можно найти температуры isi [c.24]

    Динамическая вязкость Т] воды в зависимости от температуры [86]  [c.249]

    По полученным экспериментальным данным рассчитать удельную и молярную электрические проводимости по уравнениям (ХП1.4) и (ХП1.5). По рассчитанным значениям вязкости раствора и воды при различных температурах рассчитать по уравнению (ХП1.16) корригированную эквивалентную электрическую проводимость. Построить графики зависимости 1п т] от 7 и по тангенсу угла наклона прямой рассчитать энергию активации вязкости. Вычислить по уравнению (ХП1.21) энергию активации электрической проводимости и проверить расчет графически. Сопоставить полученное значение со значением этой величины, рассчитанной по уравнению (ХП1.17). Результаты измерений занести в таблицы по образцам  [c.282]


    Температурная зависимость вязкости водяного льда (/), глицерина (2) и воды (3). Равновесная температура плавления глицерина 4-18°С [c.159]

    Силиконы являются полимерными кремнийорганическими соединениями. Их скелет аналогичен скелету неорганических силикатов, что создает как бы плавный переход от органических к неорганическим веществам как по химическому составу, так и по свойствам. Кремнийоргаиические полимеры выпускаются в различных формах от летучих жидкостей и консистентных смазок до твердых смол и каучуков. Наиболее важными общими свойствами силиконов являются высокая термостойкость, исключительные электрические сюйства, стойкость к воде и химическим реагентам. Кроме того, силиконовые масла обладают еще одним интересным свойством— малой зависимостью вязкости от температуры. [c.12]

    Вязкость воды при комнатной температуре вдвое меньше ее вязкости при температуре замерзания, а вязкость воды при температуре кипения почти втрое меньше ее вязкости при комнатной температуре. Это стало известно лишь в начале прошлого-столетия, когда ученые начали систематически измерять изменения вязкости с температурой, хотя имеются сведения о том, что еще египтяне знали о влиянии температуры на текучесть. Предложено большое количество теоретических и экспериментальных уравнений, описывающих изменение вязкости в зависимости от температуры. Вероятно, наиболее интересным является уравнение, предложенное Аррениусом, согласно которому [c.25]

    Пример 13 (см. фиг. 13V). Найти вязкость октана при какой-либо температуре, если известна его вязкость при двух произвольных температурах, например при 30° С и 40°С, а именно t]i=0,004 пз и т)2=0,0046 пз. Для сравнения выбирается вода, кривая зависимости ее вязкости от температуры нанесена на этой диаграмме. [c.29]

    Знание вязкости пластовой воды и учет влияния ее минерализации на вязкость, знание зависимости вязкости минерализованной воды от ее температуры имеют важное прикладное значение для нефтепромысловой практики. [c.325]

    Вязкость воды в зависимости от температуры  [c.111]

    В табл. 40 представлены данные относительно скорости звука, сдвиговой вязкости и поглощения звука в зависимости ОТ давления в воде для двух температур 0° и 30°С. Как видно из табл. 40 (данные Литовца, 1955), коэффициент поглощения звука уменьшается как с ростом давления, так и с ростом температуры. Процессы поглощения звука при малых давлениях и малых температурах определяются динамикой водородных связей. [c.133]

    Общим для всей водной среды является то, что после попадания на водную поверхность морей и внутренних водоемов нефть с самого начала подвергается многим физическим и химическим превращениям. Обычно нефть распространяется по поверхности воды в виде пленки толщиной несколько миллиметров в зависимости от ее вязкости и температуры. Например, толщина пленки нефти, имеющей плотность 930...960 кг/м , в холодной морской воде может достигать 6...7 мм. [c.30]

    Вода обладает многими ярко выраженными аномальными свойствами. Все они являются следствием особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды (льда) сопровождается не расширением, как для подавляющего большинства веществ, а сжатием. Аномально изменение плотности воды с повышением температуры при ее возрастании от О до 4 °С плотность увеличивается, при 4 °С она достигает максимальной величины и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры также имеет экстремальный характер. Минимальная теплоемкость достигается при 34,5 °С, что вдвое превышает теплоемкость льда (при плавлении других твердых тел теплоемкость изменяется незначительно). И вообще, удельная теплоемкость воды аномально велика. Она равна 4,2 Дж/(г-К), в то время как, на пример, теплоемкость спирта равна 0,14 Дж/(г-К). Вязкость воды в отличие от вязкости других веществ возрастает с повышением давления в интервале температур от О до 30 °С. Вода имеет температуры плавления и кипения, значительно отличающиеся от этих температур других гидратных соединений, соразмерных с водой. Воде свойственна также исключительно высокая диэлектрическая проницаемость, обусловливающая большую ее растворяющую способность. [c.20]

    Сульфолан, ДМФА и ДМСО представляют собой сильно ассоциированные жидкости с аномально высокими значениями констант Трутона (33,4 [21 и 29,5 [6, 151 Для ДМФА и ДМСО соответственно). Диметилсульфоксид имеет упорядоченную структуру, которая резко нарушаеггся при температурах в пределах 40—60°, что подтверждается зависимостью показателя преломления, удельной теплоемкости, плотности и вязкости от температуры. В этом отношении ДМСО похож на воду, у которой, по мнению некоторых исследователей [161, при 37° происходят структурные изменения. Входящие в состав ДМСО атомы серы и кислорода располагаются в последовательности, указанной на схеме I  [c.7]


    Получающийся по эмульсионному методу поливинилхло-. рид представляет собой белый порошок, растворяющийся с трудом в сложны.х. эфирах, кетонах, хлорированных углеводородах, набухающий в ароматических углеводородах и нерастворимый в воде, спирте и бензине. В зависимости от условий полимеризации можно получить полимеры с различными удельной вязкостью " и температурой разложения. [c.334]

    Динамическая вязкость 10 —-3— воды в зависимости от температуры и [c.248]

    Для стекол чрезвычайно характерна температурная зависимость теплоты активации. С повышением температуры эта функция уменьшается вследствие того, что частота разрывов связей б — О — 51 быстро возрастает с температурой. Поэтому критическая вязкость, равная 10 пуазов, отвечает яаивысшей температуре, при которой можно закалить свободные от напряжений стекла, не создавая постоянных напряжений в них. Ниже этой критической вязкости и температуры невозможны никакие молекулярные перестановки каркаса в группах [18104], вызывающие разрыв и образование новых и более сильных связей 81 — О. Состояние размягчения стекла характеризуется совместным существованием изменчивых в широких пределах сил связи, координации и междуядерных расстояний, которые испытывают флуктуационные изменения, обусловленные изменением температуры. Электропроводность, комплексные термические последействия, уменьшение мощности и т. д., затухание звуковых волн в стеклах вызываются главным образом мигрирующими илч смещенными щелочными ионами. Эти явления сильно зависят от присутствия ионов свинца и бария, которые способствуют сохранению положения щелочных ионов в стекле. Стекла, свободные от щелочных ионов, например кварцевые, имеют весьма низкую константу затухания. Механическое сопротивление стекол соответствует сопротивлению металлов при условии, что статическая прочность стекол сравнивается с сопротивлением усталости металлов. Взаимная связь механических и химических воздействий на стекла становится очевидной при рассмотрении влияния жидких реактивов на эффективность механической обработки. Шлифование с водой поверхности стекла ускоряется вследствие сопутствующего ему процесса гидролиза кроме того, поверхностная твердость стекол зависит не только от сил сцепления, [c.115]

    А. Динамическая вязкость т воды в зависимости от температуры и давления [1 638] [c.184]

    Зависимость удельного веса и вязкости от температуры для системы вода— 20%-ный раствор ТБФ в керосине [c.207]

    Формулы (XI. 85) и (XI. 86) дают относительные динамическую и кинематическую вязкости, т. е. величины безразмерные. Однако на практике в тех случаях, когда точность измерений не превышает 1%, принято считать, что т) и V выражены в саптинуазах и сантистоксах. Следует помнить, что при применении в качестве эталонной жидкости воды формулы (XI. 85) и (XI. 86) справедливы лишь в том случае, если воду используют при температуре 20°. Величину То на практике часто называют водным числом вискозиметра, так как она показывает, за сколько времени из данного прибора вытекает определенный объем воды при 20°. Таким образом, в зависимости от способа Калибровки капиллярные вискозиметры могут служить для измерения как абсолютной, так и относительной вязкости. [c.289]

    Все эти присадки огнеопасны температура вспышки целлозольвов не превышает 40—46 °С, а тетрагидрофурфурилового спирта 75—80°С температура самовоспламенения последнего 282 °С. Пределы взрываемости смесей паров с воздухом составляют для этилцеллозольва 1,8—15,7% объемн., для ТГФ 1,5—9,7%. Эти продукты токсичны допустимая концентрация ТГФ в воздухе не более 10 мг/м На рис. 52 показаны температуры кристаллизации смесей промышленных присадок с водой, а на рис. 53 — зависимость их плотности и вязкости от температуры. Эти зависимости учитывают при практическом применении присадок. [c.216]

    В результате загрязнения нефтепродуктов изменяются физико-химические показатели качества товарной продукции плотность, вязкость, содержание воды, механических примесей, температура вспышки, кислотность и т. д В зависимости от вида и степени загрязненности предлагается их подразделять на зафязненные и отработанные. [c.9]

    Выражение (3.3) показывает, что зависимость логарифма коэффициента вязкости от обратной температуры должна быть римолинейной. Это действительно наблюдается для неассоциированных жидкостей типа бензола и тетрахлорида углерода. Для воды зависимость коэффициента вязкости от температуры не описывается приведенным соотношением, что обусловлено частичным разрушением структуры водородных связей с повышением температуры. [c.77]

    Вода обладает многими специфическими свойствами, имеющими ярко выраженный аномальный характер. Все они - следствие особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды - льда - сопровождается не расширением, а сжатием, а при замерзании воды объем льда значительно увеличивается. Как известно, подавляющее большинство веществ при плавлении расширяется, а при затвердевании, наоборот, уменьшает свой объем. Аномально также влияние температуры на изменение плотности воды при росте температуры от 273 до 277 К плотность увеличивается, при 277 К она достигает максимальной величины, и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры имеет экстремальный характер. Минимальная теплоемкость достигается при температуре 308,5 К и вдвое превышает теплоемкость льда, а при плавлении других твердых тел теплоемкость изменяется незначительно. Удельная теплоемкость воды аномально велика, она равна 4,2 Дж/(г К). Вязкость воды в отличие от вязкости других веществ растет с повьццением давления в интервале температур от 273 до 303 К. Вода имеет температуру плавления и кипения, значитель- [c.186]

    Оценивалось влияние и других факторов, например влияние вязкости, зависящей от температуры [54, 78], а также переменного коэффициента теплового расширения р и изменения плотности воды в зависимости от температуры на возникновение конвекции в ограниченном геотермическом объеме [69]. Нилд [62] изучал процесс возникновения термогалиновой конвекции в горизонтальной пористой среде. В работе [6] исследовалось влияние изолированных боковых стенок на устойчивость течения применительно к задаче возникновения конвекции в трехмерной прямоугольной полости. Установлено, что по мере увеличения любого из горизонтальных размеров полости критическое число Рэлея уменьшается до предельного значения, равного 4л . Это позволяет сделать вывод, что ограничивающие среду поверхности в конечном счете стабилизируют поток. [c.383]

    Диффузионный поток и поток импульса в этой теории тесно связаны между собой. Для перескока молекулы в вакансию требуется тепловое возбуждение. Отношение числа возбужденных молекул к невозбужденным определяется множителем Больцмана рд дд — свободная энергия возбуждения. Отсюда появляются экспоненциальные зависимости коэффициентов самодиффузии и вязкости от температуры среды. На рис. 54 сплошной линией представлена зависимость коэффициента самодиффузии воды от температуры, измененная по Т-метке (диффузия НТО в Н2О (Уанг, 1965), и текучесть воды (Стокс н Миллс, 1965) 1/т1, нормированная к значе 1ию О в точке Т = 0°С. Как видно из рис. 54, такой подход обоснован лишь в первом приближении. [c.124]

    Экспериментальные данные относительно сдвиговой вязкости воды при разных температурах, включая и область переохлажденной воды, представлены на рис. 55. Зависимость (Т) была записана в виде двух соотношений. (Лау-ренс и др., 1971). В области от —10° до 40°С справедливо соотношение [c.129]

    Основными характеристиками индустриальных масел являются вязкость и температура застывания. В зависимости от вязкости различают условно три иодгрунны индустриальных масел легкие ВУ5, до 1,85 средние ВУ5э= 1,857,85 и тяжелые ВУ1эо=1,8- - -4,6. Для многих масел нормируются коксуемость, зольность, кислотность, для некоторых — цвет и плотность, для всех масел — температура вспышки, вязкость при 50° или 100°, температура застывания, содержание механических примесей, отсутствие воды и водорастворимых кислот и щелочей. [c.43]

    Из уравнения (2) также видно, что скорость фильтрования. может быть увеличена за счет уменьшения вязкости фильтрата, которая, как известно, является функцией температуры. Например, вязкость воды при повышении температуры с 20 до 60°С уменьшается в 2,3 раза. Немецкой фирмой Империал были поставлены опыты по выявлению зависимости скорости фильтрования от температуры. Опыты проводились на барабанном вакуум-й т %е с 6%-ной суспензией углекислого кальция и 5,4"/о- й р ствжом поваренной соли при температурах 20 40 60 и Амдо ительность фильтрования составляла 120 сек. [c.17]

    Уошберн, Шелтон и Либман впервые применили метод Маргулиса при изучении стекольных расплавов. Их прибор (фиг. 88) состоит из цилиндрического фарфорового тигля, в котором плавилось стекло. По вертикальной оси тигля вращалась точно центрированная цилиндрическая мешалка . Крышка фарфорового тигля обогревалась добавочной обмоткой для поддержания постоянной температуры в расплаве. Момент вращения создавался падающими грузами, подвешенными на шелковых нитях, намотанных на алюминиевый шкив вверху мешалки. Для уменьшения трения до минимума мешалка вращалась на шариковых подшипниках. Калибровка прибора производилась по сильно вязким смесям чистой глюкозы с водой и декстрозой. Вязкость жидкостей для калибровки измерялась на обычном вискозиметре Оствальда, по методу падающего шарика, по методу определеиия ск орости течения в капиллярах и, наконец, в упрощенном вискозиметре с вращающимся цилиндром. Значения вязкости градуировочных жидкостей, полученные всеми методами, хорошо согласуются. Зависимость вязкости от температуры представлена авторами на трехмерных диаграммах с температурами по вертикальной оси и треугольными диаграммами со- [c.95]

    Оксиэтилированные эфиры целлюлозы совместимы с электролитами. Эти эфиры находят все более широкое применение в составе зубных паст, это позволяет снизить содержание в них мела. МЕТИЛЦЕЛЛЮЛОЗА (МЦ) в зубных пастах находит более ограниченное применение. Это простой метиловый эфир целлюлозы. Его получают при взаимодействии щелочной целлюлозы с хлористым метилом. Характерной особенностью этого эфира является способность образовывать коллоидные растворы только в холодной воде. При повышении температуры воды метилцеллюлоза коагулирует. Вязкость растворов МЦ увеличивается в зависимости от степени этерификации. Наибольшую вязкость имеют растворы МЦ со степенью этерификации 100. Метиловый эфир целлюлозы может быть использован только при получении зубных паст, не содержащих глицерин. При их приготовлении необходимо строго контролировать температуру, так как при температуре выше 40° С однородность структуры пасты нарушается. Срок хранения таких паст не более 6 месяцев из-за малой гигроскопичности МЦ. В составе отечественных паст не применяется, АЛЬГИНАТ НАТРИЯ выделяют из бурых водорослей семейства ламинария. Хорошо совместим с основными компонентами зубных паст. В воде растворяется очень легко, а при определенных концентрациях дает вязкие структурированные растворы. В присутствии свободных ионов кальция переходит в альгинат кальция, вызывающий затвердевание зубных паст. Для предотвращения этого процесса в пасты вводят специальные комплексообразующие вещества — сукцинат натрия, триполифос-фат и др. В составе отечественных зубных паст не применяется. [c.148]


Смотреть страницы где упоминается термин Вода, вязкость в зависимости от температуры: [c.69]    [c.157]    [c.33]    [c.292]    [c.255]    [c.256]    [c.194]    [c.100]    [c.125]    [c.419]    [c.172]   
Теплопередача (1961) -- [ c.615 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость воды в зависимости от температуры

Вязкость зависимость

зависимость от температур



© 2025 chem21.info Реклама на сайте