Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, защита

    Коррозия меди Защита меди от ржавления [c.144]

    При синтезе метилового спирта выделяется тепло. Во избежание перегрева катализатора предусмотрена подача холодного газа на каждую полку реактора. Внутри реактора вмонтирован электроподогреватель для разогрева газа в пусковой период. Внутренняя поверхность реактора и теплообменника облицована красной медью (защита от карбонильной коррозии). [c.237]


    Создатели статуи пытались предотвратить контакт медной обшивки с железным каркасом. Места, в которых медь соприкасается с железом, они проложили асбестом, пропитанным каменноугольной смолой. К сожалению, эта защита оказалась недостаточной. В течение многих лет в местах контакта двух металлов скапливались конденсировавшиеся водяные пары и дождевая вода. Постоянная сырость внутри далеко не герметичной статуи приводила к коррозии железа. Железные балки каркаса при этом ржавели и увеличивались в объеме. В результате такого разбухания вылетело более. 40% из 450 ООО заклепок. В листах меди образовались дырки, что привело к провисанию медной обшивки статуи (рис. П.7,б,в). [c.133]

    Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные металлы, является легирование последних медью, хромом, никелем, алюминием и др. [c.182]

    Катодная и анодная защита. Катодное покрытие трубопроводов и других подземных сооружений применяется, как правило, совместно с каким-либо неметаллическим покрытием с целью предотвращения коррозии там, где в покрытии имеются или образуются во время эксплуатации дефекты и повреждения. В зависимости от характера покрываемого предмета может быть использована катодная защита с применением тока от внешнего источника или протекторная защита. При катодной защите можно избежать загрязнения раствора путем применения нерастворимых анодов. Материалами для изготовления катодов служат пластифицированная медь или бронза [281—283]. [c.228]

    Технологическая схема прямой гидратации этилена (рис. 70) состоит из нескольких непрерывно протекающих операций 1) приготовления исходной парогазовой смеси 2) гидратации этилена 3) нейтрализации паров продуктов, образующихся в результате реакции 4) рекуперации теплоты рециркулирующих потоков и 5) очистки циркулирующего газа. Гидратация этилена проводится в контактном аппарате, который для защиты от коррозии выкладывается красной медью. Этилен смешивается с водяными парами и вся смесь направляется в теплообменник и затем в печь, откуда парогазовая смесь при 280°С поступает в гидрататор, который заполнен катализатором на высоту 8,5 м. Время контакта 18—20 с. [c.173]


    Никелевое Медь и ее сплавы П Декоративная отделка деталей, придание повышенной отража тельной способности с одновре менной защитой от коррозии Покрытия легко полируются, со временем тускнеют. Цвет покрытий серебристо-белый с желтоватым оттенком [c.918]

    Сплавы цинка Н 36—42 Медь 18 Никель 18 Декоративная отделка деталей с одновременной защитой от коррозии (специального назначения)  [c.918]

    Сталь п 15—18 Медь 9 Никель 6 Декоративная отделка деталей, придание повышенной отражательной способности с одновременной защитой от коррозии  [c.918]

    Сплавы меди 0 В соответствии с ТУ на изделие Защита медицинского инструмента от коррозии  [c.919]

    Медь и ее сплавы П 12-15 Детали, подвергающиеся пайке, с одновременной защитой их от коррозии [c.921]

    Медь н ее сплавы 0 П 6-9 Серебро 6 Палладий до 1 Детали точных приборов, требующих постоянства электрических параметров для защиты серебряных контактов от потускнения [c.921]

    Краски, содержащие катодные по отношению к защищаемому материалу вещества (например, пигменты окислов меди и ртути), резко повышают скорость коррозионных процессов при повреждении покрытия, поляризуя материал анодно. Краски, в которые входят анодные по отношению к материалу пигменты, при наруше- ии покрытия обеспечивают в значительной степени его катодную защиту. Электрохимически активное протекторное покрытие позволяет получить краски, содержащие в качестве пигмента цинковый порошок. Особое значений эти краски приобрели еще и потому, что при сварочных работах по такому грунту качество сварки, как правило, не ухудшается. [c.197]

    В тех случаях, когда в процессе электролиза используется активный (расходуемый) анод, то последний будет окисляться в ходе электролиза и переходить в раствор в виде катионов. Энергия электрического тока при этом расходуется на перенос металла с анода на катод. Данный процесс широко используется при рафинировании (очистке) металлов. Так, на этом принципе основано, в частности, получение чистой меди из загрязненной. В раствор медного купороса погружают пластины из очищенной и неочищенной меди. Пластины соединяют с источником постоянного тока таким образом, чтобы первая из них (очищенная медь) была отрицательным электродом (катод), а вторая — положительным (анод). В результате пластина из неочищенной меди растворяется и ионы меди из раствора осаждаются на катоде. При этом примесь остается в растворе или оседает на дно ванны. Этот же принцип используется для защиты металлов от коррозии путем нанесения на защищаемое изделие тонких слоев хрома или никеля. [c.85]

    Реальность данного механизма коррозионной усталости подтверждают исследования, показавшие что ползучесть (медленная пластическая деформация), которая также осуществляется путем переползания дислокации, ускоряется общей коррозией напряженного металла. Чем выше скорость коррозии, тем выше и скорость ползучести. Прекращение коррозии, например путем катодной защиты, ведет к уменьшению скорости ползучести до исходного значения. Влияние коррозии на ползучесть мелкозернисты, металлов наблюдается у меди, латуни [82], железа и углеродистой стали [83]. [c.164]

    Легирование металлов. Легирование стали небольшими количествами меди, фосфора, никеля и хрома особенно эффективно для защиты от атмосферной коррозии. Добавление меди более эффективно в умеренном, чем в тропическом морском климате добавки хрома и никеля в сочетании с медью и фосфором повышают стойкость как в умеренном, так и в тропическом климате (табл. 8.5). Скорость коррозии конструкционных сталей в тропиках (например, в Панаме) в два и более раза выше, чем в умеренном климате (например, Кюр Бич), главным образом вследствие более высоких средних температур и относительной влажности. [c.180]

    Для защиты сооружений в морской воде с использованием внешнего тока могут быть рекомендованы коррозионностойкие аноды из плакированной платиной меди, сплава серебра с 2 % РЬ, платинированных титана или ниобия 12—14. Магниевые протекторы требуют замены примерно каждые 2 года, аноды из сплава серебра с 2 % РЪ служат более 10 лет, а аноды из сплава, содержащего 90 % Pt и 10 % 1г, — еще дольше [13]. [c.223]

    Анодная защита применима только для таких металлов и сплавов (в основном переходных металлов), которые легко пассивируются при анодной поляризации и для которых /пасс достаточно низка. Она неосуществима, например, для цинка, магния, кадмия, серебра, меди и медных сплавов. Показано, что возможна анодная защита алюминия в воде при высокой температуре (см. разд. 20.1.2). [c.229]

    Карбонат циклогексиламина имеет несколько большее давление паров (53,32 Па при 25 °С), и его пары также эффективно ингибируют коррозию стали [45]. Высокое давление паров обеспечивает более быструю защиту стальной поверхности как при изготовлении первичной упаковки, так и при необходимости вскрытия и повторного запечатывания упаковки. При проведении этих операций концентрация пара может падать ниже необходимого для защиты стали значения. Пары этого вещества уменьшают коррозию алюминия, цинка и припоя, однако не оказывают ингибирующего действия на кадмий и усиливают коррозию меди, латуни и магния. [c.273]


    Медь МО 99,95 Облицовка аппаратов для защиты от [c.30]

    Применение таких сложных присадок для защиты от ржавления элементов масляных систем паровых турбин для длительной консервации двигателей внутреннего сгорания и других машин также подтвердило их эффективность. Следует отметить, что про-дукты, эффективные для защиты от ржавления стальных поверхностей, также защищают от коррозии медь и ее сплавы (рис. 100). [c.351]

    Препараты для сельского хозяйства. Меркаптиды меди можно применять для защиты растений от вредителей. Их получают из дисульфидов и солей меди при 50 — 150° С в присутствии катализатора — азотистого основания [131. [c.53]

    Шапник М. С., Зиничепа К. А., Гудин Н. В. Исследование природы катодной поляризации в процессе восстановления этилен-диаминовых комплексов меди. — Защита металлов, 1969, Л" 16, с. 647. [c.153]

    Оксидное анодизаци- онное Алюминий и его сплавы медь и ее сплавы магниевые сплавы титан и его сплавы Твердость покрытия на алюминии и его сплавах 28-44 НВ, электроизоляционные покрытия имеют пробивное напряжение до 600 В электрическая прочность возрастает при пропитке покрытия лаками эматале-вые пленки на алюминии и окисные на титане обладают износостойкими свойствами Защита от коррозии, придание электроизоляционных свойств получение светопоглощающей поверхности (медь), защита от задиров при трении (титан), грунты под окраску [c.373]

    В целях экономии часто применяот катод, представляющий ообой металл - носитель, покрытый слоем платины. Металлом - носителем могут быть серебро, медь, бронза, купроникель, железо, свинец, латунь, титан. Стоимость такого катода составляет примерно 30 % стоимости оистемы анодной защиты. Размеры их невелики (6,2Б ом в длину и 4 сы в диаметре), поатому такие катоды можно применять в аппаратах небольших объёмов. [c.78]

    В этом отношении легирование является значительно более эффсктип . . (хотя обычно более дорогим) методом повышения коррозион с. и стойкости металлов. Примером повышекия коррозионной ст<,йк. сти металла легированием являются сплавы мсдн с золотом. Для надежной защиты меди необходимо добавлять к ией значительное количество золота (не менее 52,5 ат.%). Атомы золо- [c.505]

    Большое значение имеют вопросы электробезопасности и защиты от статического электричества, которое часто бывает причиной взрывов и пожаров, поэтому в конструкции машин и аппаратов должны быть предусмотрены устройства для его отвода. Например, при заливе органических жидкостей во избежание накопления на струе статического электричества трубу наполнения опускают до дна сосуда. Причиной взрыва могут быть также искри, возникающие при соударении стальных или титановых деталей, поэтому при работе с особо взрывоопасными веществами одну из соударяющихся деталей следует изготовлять из меди бронзы или других непскрообразующих материалов. Электрооборудование выбирают с учетом категории взрывобезопасности данного, производства. Все движущиеся детали машин и аппаратов должны иметь надежное ограждение. [c.14]

    При сварке ацетилено-кислородным пламенем газовой горелки присадочным материалом служат стержни того же состава, что и металл восстанавливаемой детали, или стержни из силумина (сплав, содержащий 85,5—88% алюминия, 7—9% меди, 5,0—5,5% кремния). Для защиты наплавленного металла от окисления используются в виде порошка или пасты флюсы, содержащие хлористые соединения калия, лития, натрия, бария, а также фтористый натрий, плавиковый шпат и криолит. [c.85]

    Кадмий входит в состав некоторых сплавов, в частности подшипниковых. Небольшая добавка С(5 к меди сильно увеличивает ее прочность, а электропроводность при этом изменяется мало. Кадмиевые покрытия металлов применяют для защиты от коррозии. Сульфид Сё5 и селенид Сс15е (ярко-красный) — пигменты в лаках и красках. Кроме того, эти соединения и теллурид кадмия используют в полупроводниковых приборах. [c.599]

    Для защиты латуни от растрескивания менее эффективно пассивированиг в хроматных растворах. Можно отметить положительное действие смазок хорошую защиту дает также покрытие цинком. Покрытия серебром, оловом и медью не защищают латунь от растрескивания, так как эти покрытия, будучи пористыми, не могут оказать электрохимической защиты. [c.119]

    Катодные металлические покрытия, электродный потенциал которых более электроположителен, чем потенциал основного металла, могут служить надежной защитой от коррозии только при условии отсутствия в них пор, трещин и других дефектов, т. е. при условии их сплощности, так как они механически препятствуют проникновению агрессивной среды к основному металлу. Примерами катодных защитных покрытий являются покрытия железа медью, никелем, хромом и другими более электроположительными металлами. [c.319]

    Этот метод нашел широкое применение в промышленности для защиты крупногабаритных конструкций в собранном виде железнодорожные мосты, газгольдеры, резервуары и т. п. Рас-ныливают обычно цинк, алюминий, медь, углеродистую сталь, нержавеющие стали и др. Этот способ пригоден для нанесения покрытии на неметаллические материалы — керамику, бетон, ткани, графит, пластмассы, картон и т. и. [c.323]

    И i цветных металлов и сплавов методы оксидирования нс-польэукэтся главным образом для защиты алюминия, магния и их сг лавов, в MeHbnjen стеиени — для защиты меди и медных сплавов. Пленки на цветных металлах и сплавах получаются химическим или электрохимическим путем и отличаются от естественных пленок большей толщиной. [c.329]

    Алюминий и его сплааы п 24-30 Медь 6 Нпксль 18 Декоративная отделка деталей с одновременной защитой от коррозии [c.917]

    Для защиты от коррозии стенки реакторов покрываются медными листами, но при этом регламентируется содержание в исходном сырье ацетилена, который взаимодействует с медью, образуя купрен. Фирма 01Ьегп1а-СЬет1е (ФРГ) предложила использовать облицовку из угольных брикетов. [c.228]

    Толстослойное анодирование служит противокоррозионной защитой в агрессивных средах, где требуется наряду с высокой коррозионной стойкостью и высокая износостойкость. Анодное оксидирование алюминия и его сплавов ведут в электролитах различных составов и при различных режимах. Наиболее эффективным, экономически выгодным и широко применяемым в настоящее время является сернокислотное анодирование. Для устранения пористости анодной пленки ее уплотняют в го- рячем 5%-ном растворе бихромата калия или в горячей воде. Толстослойное (твердое) анодирование в серной кислоте проводят при пониженных температурах электролита (от О до —10°С) Толстослойное анодирование предназначено для деталей, работающих на трение и подвергающихся эрозионным воздействиям. Наиболее твердую и толстую пленку (до 200 мкм) можно получить на чистом алюминии и его гомогенных сплавах (AlMg, АВ и др.). Хорошо анодируются также сплавы с кремнием (АЛ2, АЛ4, АЛ9) и сплавы, содержащие небольшое количество меди (типа В95). Микротвердость анодных пленок составляет 2500—5000 МН/м.  [c.63]

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]

    В 1824 г. Хэмфри Дэви [2], основываясь на данных лабораторных исследований в соленой воде, сообщил, что медь можно успешно защитить от коррозии, если обеспечить ее контакт с железом или ЦИНКОМ. Он предложил осуществлять катодную защиту медной обшивки кораблей с использованием прикрепленных к корпусу жертвенных железных блоков при соотношении поверхностей железа и меди I 100. При практической проверке скорость коррозии, как и предсказывал Дэви, заметно уменьшилась. Однако катодно защищенная медь обрастала морскими организмами в отличие от незащищенной меди, которая образует в воде ионы меди в концентрации, достаточной для уничтожения этих организмов (см. разд. 5.6.1). Так как обрастание корпуса уменьшает скорость судна во время плавания. Британское Адмиралтейство отвергло эту идею. После смерти X. Дэви в 1829 г. его двоюродный брат Эдмунд Дэви- (профессор химии Королевского Дублинского университета) успешно защищал железные части буев с помощью цинковых брусков, а Роберт Маллет в 1840 г. специально изготовил цинковый сплав, пригодный для использования в качестве жертвенных анодов. Когда деревянные корпуса судов были вытеснены стальными, установка цинковых пластин стала традиционной для всех кораблей Адмиралтейства . Эти пластины обеспечивали местную защиту, особенно от усиленной коррозии, вызванной контактом с бронзовым гребным валом. Однако возможность общей катодной защиты морских судов не изучалась примерно до 1950 г., когда этим занялись в канадском военно-морском флоте [3]. Было показано, что при правильном применении препятствующих йбрастанию красок и в сочетании с противокоррозионными красками катодная защита кораблей возможна и заметно снижает эксплуатационные расходы. Катодно защищенные, а следовательно, гладкие корпуса уменьшают также расход топлива при движении кораблей. [c.216]

    Обычно жесткие воды с положительным значением индекса насыщения сравнительно малокоррозионноактивны и не требуют какой-либо обработки для предотвращения коррозии. Мягкие воды, напротив, приводят к быстрому накоплению ржавчины в железных трубах. Они легко загрязняют свинцовые трубы солями свинца в токсичных количествах окрашивают в голубой цвет санитарно-техническое оборудование солями меди, которые образуются при слабой коррозии медных и латунных труб. Лучшим способом защиты от коррозии в таких водах была бы вакуумная деаэрация. Однако стоимость обработки столь больших количеств воды очень велика, и в системах коммунального водоснабжения такие установки практически отсутствуют. Тем не менее, такую возможность надо принимать во внимание. [c.278]

    Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]

    Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % N1 (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержащие кроме того от нескольких десятых до 1,75 % Ре, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % N1 монель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо. [c.361]

    Сплавы кремний—железо стойки в крепких кислотах серной, азотной, фосфорной (чистой), уксусной, муравьиной и молочной— при всех концентрациях вплоть до температуры кипения. Их применяют также в качестве коррозионностойких анодов при электролитическом получении меди и в системах катодной защиты. Они недостаточно стойки в галогенах, расплавах щелочей растворах НС1, НР, Н3РО4, загрязненной НР, а также в Н БО РеС18, гипохлоритах и царской водке. Сплав обычно являете [c.384]

    Рассчитайте минимальное значение потенциала (относительно н. к. э.), до которого необходимо деполяризовать медь в 0,1 т растворе Си304 для полной катодной защиты. [c.393]


Библиография для Медь, защита: [c.405]   
Смотреть страницы где упоминается термин Медь, защита: [c.514]    [c.159]    [c.192]    [c.224]    [c.280]   
Защита от коррозии на стадии проектирования (1980) -- [ c.366 ]




ПОИСК







© 2024 chem21.info Реклама на сайте