Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вакуумные системы схема

    При варианте двукратного испарения по остатку применяют независимые вакуумные системы в каждой ступени с поддержанием более глубокого вакуума во второй. Эта схема позволяет увеличить флегмовые числа в колоннах за счет уменьшения расхода паров во второй ступени примерно в 1,5—3 раза. По такой схеме получаются масляные фракции лучшего качества при меньшей себестоимости процесса очистки масел [61]. Улучшение ачества разделения масляных фракций по схеме двукратного испарения по остатку с пониженным давлением во второй ступени иллюстрируется следующими данными [62]  [c.187]


    На рис. 111-35 показаны принципиальные схемы конденсационно-вакуумных систем, применяемые в нефтепереработке при перегонке мазута в соответствии с принятой в работе [79] классификацией, а также основные потоки и давление в линиях и аппаратах конденсационно-вакуумной системы. [c.197]

    Для предупреждения подобного рода аварий необходимо обеспечить надежную работу вакуумной системы, герметичность оборудования и требуемые параметры технологического режима. В технологической схеме должны быть предусмотрены автоматические блокирующие системы, исключающие возможность роста температуры и давления в аппаратах выше норм, а также устройства, отключающие подачу теплоносителя в подогреватель при исчезновении вакуума. [c.142]

    С помощью новой системы управления удалось стабилизировать уровень, однако возмущения в вакуумной системе все еще оказывали влияние на положение уровня поверхности испарения, который менялся на 100 см при изменении давления на 2 мм рт. ст. Для исправления этих неполадок была рекомендована более чувствительная система регулирования давления, т. е. уменьшены постоянные времени /Сб и Тг и дополнительно установлен регулятор давления на паровой линии к эжектору. Причинами совершенно неудовлетворительного управления по первоначальной схеме являются очень большие чистое запаздывание и постоянные времени испарителя, особенно когда происходят возмущения по вакууму. [c.142]

    Схема вакуумной системы установки [c.4]

Рис. 7-23. Схема вакуумной системы универсальной дуговой вакуумной печи для выплавки слитков. Рис. 7-23. Схема вакуумной системы универсальной <a href="/info/21294">дуговой вакуумной печи</a> для выплавки слитков.
    Схема вакуумной системы и системы охлаждения установки [c.10]

    Таким образом, схема позволяет печи работать в широком диапазоне остаточных давлений в рабочей камере. Кроме того, при работе печи в диапазоне высокого вакуума имеется возможность осуществлять параллельную работу высоковакуумного и бустерных насосов, что существенно улучшает работу печи в режиме пиковых газовыделений, когда при падении вакуума в камере печи основную нагрузку принимают на себя бустерные насосы. Однако такая универсальность обходится дорого, так как вакуумное оборудование и арматура имеют высокую стоимость. Очевидно, универсальные схемы допустимы для одиночных агрегатов, предназначенных для исследовательских целей. Серийные печи, имеющие более узкое назначение, должны иметь вакуумные системы, рассчитанные также на более узкий диапазон давлений. Типовые вакуумные схемы описаны в ряде источников, в том числе в Л. 22] там же приведены краткие сведения о вакуумных насосах, арматуре, измерительных средствах и методике расчета вакуумных систем, поэтому мы их здесь не рассматриваем. [c.215]


    В основу работы электронографа положено явление дифракции электронных волн на молекулярной структуре веществ. Принципиальная схема электронографа для исследования строения молекул в газовой фазе (рис. 6.1) включает следующие основные узлы электронно-оптическую (осветительную) и вакуумную системы, фотокамеру с секторным устройством, испаритель с ловушкой для вымораживания паров. [c.138]

    Масс-спектрометр имеет следующие основные элементы систему ввода образцов, источник ионов, анализатор масс и систему детектирования ионов, усиления и представления сигнала. Вспомогательный элемент спектрометров — вакуумная система, которая обеспечивает необходимое разрежение (ж 1,33- 10 Па) для предотвращения столкновений ионов с молекулами воздуха. На рис. 31.16 приведена блок-схема масс-спектрометра, а в табл. 31.9 — методы [c.752]

    На рис. 7-5 показана схема устройства печи для плавки в гарниссаже. В корпусе печи I, к которому присоединена вакуумная система, размещается водоохлаждаемый тигель 3, в котором происходит накапливание жидкого металла, сливаемого в литейную форму 2. Расходуемый электрод 4, закрепленный в электрододержателе 5, при помощи механизма 6 опускается в тигель. [c.188]

    Из схемы на рис. 9-1 ясно, что здесь можно прекратить плавление металла и использовать всю мощность печи для нагрева поверхности жидкой ванны, причем эта поверхность не экранируется расходуемым электродом. По этим причинам при достаточных мощности электронной пушки и производительности вакуумной системы электронная плавильная печь является весьма эффективным рафинировочным агрегатом, позволяющим применять практически все средства очистки металла от примесей в условиях высокого вакуума. Последнее обусловлено тем, что нормальное прохождение электронного луча в рабочей камере печи и эффективное осуществление электронной бомбардировки (электронного нагрева) возможны только тогда, когда в рабочей камере поддерживается вакуум не ниже 1 10 мм рт. ст. [c.235]

    Процесс хлорирования проводят в хлораторах периодического и непрерывного действия, напорных и вакуумных. Принципиальная схема очистки вод хлорированием показана на рисунке 25. Хлорирование проводится в емкости, включенной в систему циркуляции. В инжекторе газообразный хлор захватывается сточной водой, циркулирующей в системе до тех пор, пока не будет достигнута заданная степень окисления, после чего вода выводится для использования. [c.54]

    На рис 1 2 приведена схема вакуумной системы ионного источника с разными системами ввода образцов [c.10]

Рис. 12.7. Принципиальная схема вакуумной системы Рис. 12.7. <a href="/info/24285">Принципиальная схема</a> вакуумной системы
Рис. 114. Схема вакуумной системы Рис. 114. <a href="/info/66458">Схема вакуумной</a> системы
    Рис 24 Схема сборки вакуумной системы [c.130]

    Вакуумный монохроматор состоит из двух основных частей спектрального прибора, закрытого кожухом /, и основания 8, внутри которого размещены вакуумная система и элементы электрической схемы. [c.299]

    Спектрограф ДФС-26 состоит из двух блоков собственно спектрографа I и блока вакуумных насосов, находящихся внутри основания 4. Спектрограф расположен на основании, внутри которого размещены элементы вакуумной системы и электрической схемы. [c.301]

    Вакуумный спектрограф ДФС-29 состоит из двух основных частей собственно спектрального прибора 1 и основания 10, внутри которого размещены вакуумная система и элементы электрической схемы. Узел входной щели, узел дифракционной решетки в оправе и узел кассетной части закреплены на отдельной платформе, которая помещается в корпусе прибора и крепится в нем на трех точках. Перефокусировка спектра осуществляется рукояткой 3. [c.302]

    На пульте установлены вакуумметр, переключатели для управления вакуумной системой и электрической схемой, контрольные лампочки и т. д. [c.302]

    Блок-схема масс-спектрометра, используемого в масс-спектральном анализе 1 — ионный источник 2 — блок питания ионного источника з — система напуска 4 — блок питания анализатора масс 5 — анализатор масс в —приемник ионов 7 — усилитель ионных токов — регистрирующее устройство 9 — высоковакуумный насос 10 — форвакуумный баллон 1 — форвакуумный насос 12 — блок управления вакуумной системой. [c.778]


    Распространенность схем в промышленности различна. Из общего числа установок, по которым получены данные для классификации, 48% работают по схеме а, 12% — по схеме б, 17% — по схеме в и 3 и в% — по схеме г, т. е. 23% установок имеют полностью закрытые системы. Температура парового потока, покидающего первую ступень конденсации, выше 100 С, что свидетельствует о выносе из колонны большого объема паров во вторую ступень. Очевидно, это и является одной из основных причин повышенного давления на верху колонн, которое в большинстве случаев составляет 107—120 гПа вместо 53—80 гПа по проекту. Конденсационно-вакуумные системы различают также и по расходу охлаждающей воды и пара на эжекцию. В частности, расход воды для каждой из схем мёняется в пределах 1—5 м /т, а расход пара на эжекцию — от 1 до 3% по отношению к сырью колонны и являются соизмеримым расходу острого пара, подводимого в низ колонны. [c.197]

    Рассмотрим теперь работу конденсационно-вакуумной системы на примере схемы а. Уходящие с верха колонны нефтяные Я1ры конденсируются в колонне [c.197]

    Последовательность выполнения работы. Схема прибора приведена на рис. 82. Исследуемую жидкость в количестве 75—100 мл налить в сосуд /. Туда же для устранения местных перегревов и облегчения образования новой фазы поместить несколько кусочков активированного угля или неглазурованного фарфора. Сосуд 1 закрыть пришлифованной пробкой с термометром <3 и погрузить в термостат сдистилли-роваиной водой. В комплекте термостата необходимо иметь мешалку 6, контактный термометр 7 и кипятильник 2. Сосуд / соединить с вакуумной системой через змеевидный холодильник 4, в котором улавливаются пары исследуемой жидкости. Это необходимо для предупреждения конденсации паров на стенках соединительных трубок и и манометре II. Холодильник 4 через краны 5 н 8 соединен с вакуум-насосом [c.172]

    Крем доя бритья представляет собой ароматизированный продукт, состоящий из смеси калийных и натриевых мыл, стеарина и жирных кислот кокосового масла в водно-глицериновом растворе с вводом полезных добавок и антисептиков. Известен ряд технологических схем производства кремов доя бритья. Однако в последние годы в промышленности используется более прогрессивный способ приготовления кре мов на установках, описанных ниже. Способ приготовления крема доя бритья на оборудовании фирмы Иозеф Эгли (Швейцария) показан на рис. 25. Сырье для приготовления крема (кокосовое масло и стеарин) закачивается по обогреваемым трубопроводам в резервуары 5 и 6. В резервуар 4 подается щелочь из емкостей 2 и 5, сюда же поступают глицерин, вода и различные водорастворимые добавки. Резервуары 4, 5 тя. 6 снабжены мешалками и паровыми рубашками. Смесь перемешивается и нагревается до температуры 70 °С. В реакторах 1 и 7 проводится варка крема доя бритья. Реакторы снабжены вакуумной системой, якорной и синусной мешалками и рубашкой доя охлаждения и нагревания крема. В предварительно нагретый реактор с помощью разрежения через счетчики-дозаторы подается 50 % рецептурного количества стеарина из резервуара 5 и через те же счетчики-дозаторы - все рецептурное количество кокосового масла из резервуара 6. Затем через счетчики-дозаторы в реактор поступает водно-щелочная смесь из резервуара 4 доя омыления, продолжающегося в течение 45-50 мин. После этого в реактор подается оставшееся количество стеарина на нейтрализацию свободной щелочи. Готовый крем охлаждается в реакторе с помощью охлажденной воды, подаваемой в рубашку реактора. Вода циркулирует в замкнутой системе через холодильный агрегат. В процессе охлаждения крема при температуре 30-50 °С через воронку в реактор загружают остальные добавки и отдушку в соответствии с рецептурой крема. [c.203]

    В масс-спектрометре МХ-1303 ввод образца в ионный источник обеспечивается системой, схема которой вместе с усовершенствованиями, внесенными в систему авторами, изображена на рис. 12. Эти изменения позволили вводить в баллон напуска вещества, выкипающие до 200° С, минуя шлюз. Система напуска, выполненная в виде отдельной стойки, имеет самостоятельную вакуумную систему, предназначенную для откачки баллона напуска и вакуумных коммуникаций перед анализом и для ввода анализируемой пробы в баллон напуска. Предварительное разрежение создается форвакуум-ным насосом типа ВН-461 производительностью 50 л1мин. Для создания высокого вакуума служит ртутный диффузионный насос типа ДРН-10. Давление в системе измеряется при помощи блока, датчики которого — термопарные манометрические лампы типа ЛТ-4М — установлены на форвакуумном насосе и баллоне. На высоковакуумной ловушке установлены датчики ионизационного манометра (лампы ЛМ-2), [c.40]

    На рис. 7-23 приведена схема вакуумной системы одной из первых отечественных вакуумных дуговых печей, имевшей универсальное назначение (выплавка слитков разных металлов). В связи с ее универсальностью печь снабжена высоковакуумным насосом Н-8Т производительностью 8 000 л1сек в интервале давлений 10 —10 мм рт. ст., а также двумя бустерными наносами БН-1500, обладающими суммарной производительностью (скоростью откачки) около 3 000 л сек при давлении около 1 рт. ст. в схеме предусмотрена линия предварительной откачки, на которой перед насосом ВН-6Г установлен фильтр Ф, поглощающий частицы пыли,- уносимые потоком газов, который в самом начале откачки имеет турбулентный, а впоследствии вязкостный характер. [c.214]

    Схема манометра Бурдона 1-нссле-дуемое в-во, 2- карманы для термопар, 3-серповидная мембрана, 4-шток, 5-указатель нулевого тюложе-ння, 6-К вакуумной системе, 7-напуск компенсирующего газа, 8-трубка для загрузки образца, 9-место перепайки под вакуумом [c.521]

    Главным узлом, имеющим открытую связь установки вакуумной перегонки с окружающей средой, является конденсационно-вакуумная система, через которую выбрасываются загрязнители. Поэтому от выбора схемы и устройства конденсационно-вакуумсоз-дающих систем будет в значительной степени зависеть не только уровень энергозатрат на создание вакуума, а также уровень безвозвратных потерь углеводородного сырья и выброс вредных веществ в окружающую среду. [c.261]

    Схема установки для роста нитевидных кристаллов графита на основе инфракрасного лазера ЛГ-25 с длиной волны 10,6 мкм представлена на рис. 17. Установка состоит из блока питания лазера 2, реактора 4, укрепленного на трехкоординатном столике, и вакуумной системы. Входные и выходные отверстия в реакторе изготовлены из хлористого натрия. Прошедший пучок излучения улавливается ловушкой 6. После вакуумирования реактор наполняется исследуемым газом, который разлагается только на подложке 5, оставаясь при этом холодным. Линза из хлористого натрия 3 позволяла фокусировать световой пучок до размера 200 мкм, что обеспечивало получение на графите температур, до 3000° С. Использование лазерного излучения с длиной волны 10,6 мкм (инфракрасная область) имеет то преимущество перед нагревом с помощьк> мощной ксеноновой лампы, что исключает постороннюю засветку и позволяет проводить непрерывное пирометрнрование образца. [c.46]

    Ионизованные молекулы и атомы по их массам разделяют в масс-спектрометре, схема основных узлов которого приведена на рис. 12.1. Он состоит из устройства для ввода пробы 1, в которое газы вводят непосредственно, а жидкости испаряют заранее или в приборе. Задача системы напуска заключается во вводе такого количества газообразной пробы, чтобы обеспечить давление 10" —10" мм рт. ст. в ионном источнике 2, где молекулы иониз1фуются. При ионизации электронным ударом электроны испускаются раскаленньпй катодом, соударяются по пути к аноду с молекулами введенного вещества и часть этих молекул электроны ионизуют. Образующиеся ионы выводятся из зоны ионизации, ускоряются электрическим полем и одновременно фокусируются в пучок (узел ускорения и фокусировки ионов 3). Нейтральные молекулы удаляются вакуумным насосом. Все узлы прибора находятся под высоким вакуумом (вакуумная система 4), который обеспечивает необходимую длину свободного пробега ионов. Поток ускоренных ионов попадает в масс-анализатор 5, где ионы разделяются по массе. Разделенные пучки ионов затем попадают в детектор б, где ионный ток преобразуется в электрический сигнал, который усиливается усилителем 7 и обрабатывается ЭВМ 8. [c.365]

Рис. 86. Стандартная блок-схема кристаллизационной установки 1 — вакуумная система 2 — система нагрева 3 — кристаллизационная камера 4—механизм перемещения 5 — система стабилизации и управления 6 — система электронитания Рис. 86. Стандартная блок-<a href="/info/329972">схема кристаллизационной установки</a> 1 — <a href="/info/304458">вакуумная система</a> 2 — система нагрева 3 — кристаллизационная камера 4—<a href="/info/28109">механизм перемещения</a> 5 — <a href="/info/51051">система стабилизации</a> и управления 6 — система электронитания
    При монтаже отдельных частей оборудования для перегонки сам перегонный прибор и вспомогательные аппараты следует рассматривать как единую вакуумную перегонную установку, и составные части ее должны быть так сконструированы и иметь такие размеры, чтобы дать в руки химику хороший прибор. Очень часто бывает так, что умело сконструированный вакуумный перегонный прибор работает плохо, потому что плохо сконструированная вакуумная система ограничивает производительность перегонного прибора. В задачи настоящей главы не входит дать все правила для конструирования лабораторных вауумных систем. Но в ней будут приведены общие основы и упрощенные правила, которые могут оказаться полезными химику, желающему применить молекулярную или высоковакуумную перегонку для решения стоящих перед ним задач. В большинстве случаев вакуумная система бывает больше, чем сам перегонный прибор, т. е. больше, чем та часть всей установки, которая состоит из испарителя и конденсатора. Примеры этого видны из фотографий на рис. 24 и 28 (часть I) и из схемы на рис. 50 (раздел IX). Поэтому очевидно, что та часть установки, в которой непосредственно протекает перегонка, заслоняется дополнительным вакуумным оборудованием. Причины такого кажущегося несоответствия станут понятными по прочтении главы. [c.455]

    В существующих технологических схемах, как отечественных, так и зарубежных, для концентрирования ГПК используется двухколонная вакуумная система дистилляции. В первой колонне отгоняется непрореагировавший ИПБ, возвращаемый в реактор окисления, и получается 70%-й ГПК. Дистиллят второй колонны возвращается в рецикл на первую колонну, а в качестве кубового продукта образуется 90%-й технический ГПК, который направляют на кислотное разложение. Для увеличения доли отгона ДМФК и АФ из технического ГПК во второй колонне создают более глубокий вакуум г 0,53 кПа и поддерживают температуру куба не выше 100 °С. Переработка образующихся побочных продуктов может быть осуществлена совместно (в случае кооперации производств фенола, ацетона и пропиленоксида) с побочными продуктами производства пропиленоксида кумоль-ным методом. [c.238]

    Способы варки целлюлозы, ее промывки и оборудование дпя этих операций могут существенно изменяться, но во всех случаях на современных заводах применяется яротипоточная система. Схема потоков на фиг. 1 иллюстрирует способ промывки на вакуумном промывном барабане с подачей свежей воды на оконечный спрыск и разбавленного потока с этой части промывного аппарата на первый спрыск. По схеме противотока могут работать два или несколько барабанных промывных аппарата. При использовании варочных кот пов непрерывного действия волокнистая масса промывается непосредственно в котле. [c.250]

    Схематическое изображение простой статической установки БЭТ приведено на рис. 4. Существенными частями установки являются адсорбционная ампула, в которой находится исследуемый образец, сосуд Дьюара для термостатирования образца при температуре жидкого азота, манометр для определения давления адсорбата, газовая бюретка, устройство для введения в систему дозированного объема инертного газа, обычно азота, и вакуумная система. Для соединения отдельных частей системы по возможности используются капиллярные трубки с тем, чтобы свести объем газа до минимума. Дополнительные устройства, не показанные на схеме, включают оборудование для предварительной обработки образца и баллон с гелием, используемым при калибровке. Для удаления поверхностных загрязнений и газов проводят предварительную обработку образца, обычно путем нагревания в вакууме. Предварительную обработку часто производят непосредственно в адсорбционной ампуле, при этом сосуд Дьюара просто заменяют нагревателем. Адсорбционная система (рис. 5), разработанная Эмметом [6], не пригодна для образцов с малой поверхностью (менее 5 м ). В действительности нижним пределом удельной поверхности служит величина 1 м г 1. Однако для того, чтобы снять хороший график БЭТ, в случае адсорбции азота необходимо иметь по крайней мере 5 м поверхности [81]. Для определения малых поверхностей твердых тел необходимо оборудование работающее при низких давлениях или обладающее высокой точностью. Эти специальные системы описаны Россом и Оливье. Техника изготовления стеклянных адсорбционных установок БЭТ описана Джойнером [7] и Файтом и Уилингамом [11], Схема подобной установки приведена на рис. 6. Для определения поверхности электродов Залкинд, Каннинг и Блок [ 8] использовали шестипозиционную установку БЭТ, изображенную на рис. 7. [c.311]

    На некоторых заводах газы, поступающие в поверхностные конденсаторы и содержащие сероводород, выбрасываются в атмосферу или сжигаются в технологической печи. Такое решение не может считаться оптимальным. Рекомендации, разработанные БашНИИ НП, позволяют сконцентрировать сероводород в отходящих газах с последующим его извлечением и утилизацией. Рекомендуемая принципиальная схема вакуумной системы с использованием барометрических конденсаторов поверхностного типа с узлом очистки и утилизации газов показана на рис. 5.16. Утилизация сероводорода достигается использованием моноэтаноламиновой очистки газов разложения, узел которой разработан в НИИОГаз. Внедрение такого узла на НПЗ производительностью 6 млн. т/год позволит утилизировать 1000— 1500 т/год серы. [c.176]

    Для предупреждения возможных опасных подсосов воздуха в транспортные системы, работающие под вакуумом, необходим строгий систематический надзор за герметичностью аппаратуры и трубопроводов, а также автоматический контроль стабильности регламентированных давлений в соответствующих точках технологической схемы. При возможности образования взрывоопасных смесей и их воспламенения системы транспорта под вакуумом должны оснащаться автоматическими блокировками повышенной надежности, исключающими превышение установленного минимального давления в вакуумной системе. Автоматические средства контроля и регулирования транспорта материалов под вакуумом должны подвергаться такому же техническому надзору, как и автоматические средства, предназначенные для систем, работающих при повышенных давлениях. Кроме того, требуется систематический контроль отсасываемых из вакуум-аппаратов газов на содержание кислорода. Для этого установки должны быть оборудованы автоматическими сигнализирующими вакуум-монометрами и газоанализаторами. [c.271]

    В аеиациоин ой лро мышленности применяется литье в вакууми ро-ванные формы. Откачка воздуха из формы производится насосами ВН-4Г или ВН-6Г, причем в схеме устанавливается дополнительный вакуумный объем 1 м . Управление установкой автоматизировано. Камера прессования соединяется с вакуумной системой гидравличе- [c.362]


Смотреть страницы где упоминается термин Вакуумные системы схема: [c.135]    [c.200]    [c.439]    [c.199]    [c.304]    [c.368]    [c.504]    [c.84]   
Техника низких температур (1962) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Вакуумная схема



© 2025 chem21.info Реклама на сайте