Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пирогаз очистка

    Газы и пары, поднимающиеся из нижней части К — 1, проходят полуглухую тарелку и подвергаются ректификации на верхних тарелках колонны. Конденсат с аккумулятора К—1 подается также в колонну К-2. Выходящий с верха колонны К — 1 пирогаз с парами легких фракций пироконденсата охлаждается в водяном холодильнике до 30 °С и поступает в газосепаратор С — 1. Легкий конденсат подается на орошение верха К—1 и на ректификацию в К-2. Выводимый с верха С — 1 пирогаз подается на моноэтаноламиновую очистку и далее на ГФУ. [c.69]


    При взаимодействии плазмы с жидкостью, например азота и водорода с жидкими углеводородами, могут быть синтезированы ацетилен и цианистый водород [4]. Для осуществления процесса плазменную струю затопляют в толще жидкого углеводорода. Процесс протекает в газовом пузыре, который образуется вблизи сопла плазмотрона. Температура в зоне реакции зависит от мощности генератора плазмы и теплофизических характеристик плазмообразующего газа. К преимуществам такой организации процесса относят очистку от сажи и тяжелых углеводородов при прохождении пирогаза через толщу углеводородного сырья непосредственную закалку продуктов в слое углеводородов возможность использования некондиционных видов сырья. [c.188]

    В процессе предварительного захолаживания с использованием холода дросселированной метановой фракции производится отбор основного водородного потока, который затем проходит тонкую очистку. Пирогаз после выделения водорода направляется в деметанизатор, где оставшийся водород и метан отделяются от этана, этилена и более тяжелых углеводородов. Кубовой продукт деметанизатора поступает в деэтанизатор, с верха которого отбирается фракция Сз. К ней добавляется водород, и смесь подается в реактор гидрирования ацетилена. После этого фракция Сз проходит осушку и направляется в этиленовую колонну, с верха которой отбирается этилен, а снизу этан, возвращаемый на пиролиз. [c.104]

    В некоторых случаях пирогаз, т. е. продукт пиролиза газообразного сырья, первоначально промывается абсорбционным маслом для удаления углеводородов С4 и выше. Одной из основных целей этой промывки является удаление диеновых углеводородов. В дальнейшем производится двухступенчатая очистка от углекислого газа и сероводорода, очистка от ацетилена путем его гидрирования. Следующие стадии очистки заключаются в окончательном удалении из газа следов тяжелых углеводородов и в его осушке. [c.305]

    Очистка углеводородов пирогаза [c.306]

    На некоторых установках для получения этилена очистки га за от СО2 и НаЗ осуществляется первоначально раствором солей аминокислот — алкацидами. После этой очистки в пирогазе остаются только следы двуокиси углерода и практически полностью удаляется сероводород. Окончательная очистка от следов двуокиси углерода производится раствором едкого натра. [c.306]

    При каталитическом гидрировании ацетилен превращается в основном в этилен. Гомологи ацетилена превращаются в другие углеводороды. Процесс каталитического гидрирования может быть произведен на различных этапах очистки пирогаза. Гидрирование для удаления ацетилена может быть сделано до низкотемпературной ректификации. [c.308]


    Другой способ очистки пирогаза или готового товарного этилена от ацетилена заключается в промывке ацетоном, поскольку ацетилен растворяется в ацетоне примерно в 30 раз лучше, чем этилен. Для подобной очистки применяется фракционирующий абсорбер, в котором под давлением 4 ат и температуре —65° С ацетилен и поглощается ацетоном. Абсорбер работает по циркуляционной схеме, будучи соединен с десорбером. Регенерированный в десорбере ацетон подается в верхнюю часть абсорбера. [c.308]

    Другим растворителем, применяемым для очистки пирогаза от ацетилена, является диметилформамид. Растворимость ацетилена в диметилформамиде нри —50° С и 28 ат в 65—70 раз больше растворимости этилена. Диметилформамид применяется также для очистки товарного этилена от ацетилена. [c.308]

    Для выделения и очистки ацетилена используется его большая, чем у других компонентов пирогаза, растворимость в некоторых растворителях. Для этой цели в качестве сорбентов используются метанол и ацетон при температуре [c.254]

    Чтобы дать более точное представление о режиме фракционирования ожиженных углеводородных газов под давлением и показать относительную с ложность осуществления различных холодильных циклов, ниже описано разделение по схеме Линде пирогаза, полученного пиролизом некоторых нефтяных фракций. Одиако предварительно необходимо сделать несколько замечаний об очистке газов крекинга и пирогаза от ацетилена. [c.155]

    Наличие, в пирогазе сероводорода и двуокиси углерода вызывает коррозию аппаратуры и трубопроводов. Кроме того, эти примеси должны быть практически исключены из товарных этилена и пропилена. Очистка пирогаза от сернистых соединений и двуокиси углерода осуществляется щелочными растворами на одной из промежуточных стадий пятиступенчатого компрессора. Колонна щелочной отмывки пирогаза имеет две полуглухие тарелки щелочной раствор циркулирует по следующим контурам из куба колонны сн насосом подается на вторую полуглухую тарелку, а оттуда — на первую полуглухую тарелку. [c.45]

    Установка пиролиза состоит из реакторного блока, секции выделения пирогаза и разделения смолы, секции компримирования, очистки и осушки газа пиролиза и секции газоразделения. На рис. П1-8 изображена упрощенная технологическая схема установки пиролиза ЭП-300, спроектированная Уфимским филиалом ВНИПИнефть. Сырьем установки служит фракция 62—180 °С прямогонного бензина и фракция 62—140°С бензина-рафината каталитического риформинга. Предусмотрен также пиролиз этана и пропана, получаемых в процессе и с заводских ГФУ. [c.33]

    Часть прямогонного бензина можно направить на пиролиз для получения олефиновых углеводородов. Степень очистки этой части зависит от количества остаточной серы в бензине и от наличия очистных блоков в составе установок пиролиза. Поскольку получаемый на таких установках пирогаз проходит сложную систему очистки, включая очистку от ацетиленовых соединений гидрированием, прямогонный бензин, как правило, не требует предварительной глубокой очистки, и содержание в нем серы может быть ограничено стадией обработки щелочью. [c.72]

    Функциональная схема ХТС производства этилена из бензина изображена на рис. 6.6. Бензин и рециркулирующий этан поступают на пиролиз. Продукты пиролиза (пирогаз) направляются на стадию первичного фракционирования, где легкая и тяжелая смолы отделяются от газа пиролиза. Последний направляется на компримирование (сжатие компрессором). Газ пиролиза очищают от сероводорода и диоксида углерода, одновременно отделяются тяжелые фракции (С5 и выше). После осушки газ пиролиза поступает на разделение. В современных установках перед разделением газ подвергают глубокому охлаждению и выделяют водород и метан. Этан-этиленовая фракция подвергается очистке от ацетилена методом селективного гидрирования и разделяется на этилен с концентрацией 99,9% и этан. Последний возвращается на пиролиз. [c.353]

    Для реконструируемых заводов, на которых до сих пор не была предусмотрена тонкая очистка этилена непосредственно в пирогазе, предложена схема, представленная на рис. 17,10. Этилен после гидрирования примеси ацетилена поступает, в один из адсорберов 1, откуда после осушки и очистки направляется в блок разделения. В колонне 2 [c.354]

    Очистка пирогаза от сажи [c.453]

    Наличие сажи затрудняет переработку пирогаза, поэтому его подвергают очистке. На рис. Х-1 приведен один из вариантов схемы очистки от сажи газа, получаемого термоокислительным пиролизом метана. [c.453]

    После закалки пирогаз направляют в полый скруббер, где его промывают горячей водой для удаления основного количества сажи (ее содержание в выходящем газе снижается до 300—500 мг/м ). Тонкую очистку газа от сажи осуществляют двумя способами. Первый из них заключается в том, что газ пропускают через фильтр, заполненный мелкораздробленным коксом (—8—15 мм) и орошаемый холодной водой. Кокс периодически меняют, снизу фильтра отбирают загрязненный кокс, который для регенерации промывают горячей водой, сверху загружают свежую порцию. Содержание сажи в газе после коксового фильтра составляет 10—30 мг/м , т. е. этим способом достигается относительно грубая очистка газа. Остающаяся [c.453]


Рис. Х-1. Технологическая схема очистки пирогаза от сажи Рис. Х-1. <a href="/info/28499">Технологическая схема очистки</a> пирогаза от сажи
    Используя различную растворимость перечисленных групп компонентов, можно довольно просто выделить ацетилен из пирогаза. Особенностью соответствующих технологических схем является отсутствие специальных узлов очистки газа от двуокиси углерода и гомологов ацетилена. [c.457]

    Освобожденный от компонентов третьей группы пирогаз выходит из абсорбера 1 и поступает в колонну 13 для очистки от двуокиси углерода. Колонну орошают аммиачной водой, содержащей примерно 80 г/л растворенного аммиака. Процесс проводят при 25— 30 °С и 8,5-10 —8,6-10 (8,7—8,8 кгс/см ). Аммиачная вода поступает в колонну 13 из регенерационной колонны 18 после предваритель- [c.477]

    Из-за отсутствия очистки пирогаза от сернистых соединений и ацетилена этилен загрязняется примесями. [c.174]

    Рассмотрение схемы получения 99%-ного этилена путем очистки готового 95—97%-ного этилена и схемы, использующей очистку всего пирогаза, показало ряд преимуществ второй из этих схем. [c.176]

    Таким образом, в результате изучения вопроса рекомендуется нри организации производства 99%-ного этилена на базе существующих установок 95%-ного этилена, а также нри проектировании новых этиленовых установок учесть рациональность включения в схему 1) в голове процесса — очистку от ацетилена всего нирогаза путем гидрирования 2) после гидрирования— очистку всего пирогаза от кислых газов 3) очистку от остатков метана для части этилена, необходимого для производства полиэтилена 4) очистку фракции от бутадиена с получением его в виде товарного продукта. [c.177]

    В работе [87] рассмотрено внедрение новых насадок в колоннах щелочной очистки пирогаза. Разработаны насадочные элементы сочетающие большую производительность по газу и жидкости, большую эффективность разделения и низкое гидравлическое сопротивление. [c.77]

    Технологический процесс получения ацетилена этим способом основан на термоокислительном пиролизе метана с кислородом (соотношение кислорода и метана должно быть в пределах 0,58— 0,62) в реакторах при 1400—1500 °С и избыточном давлении. Процесс состоит из следующих стадий подогрева метана и кислорода пиролиза метана и закалки пирогаза очистки пирогазов от сажл в скрубберах или электрофильтрах компримирования пирогаза до давления 0,8—1,2 МПа и абсорбции ацетилена и его гомологов селективным растворителем (метилпирролидоном, диметилформ-амидом) фракционной десорбции газов в десорбере первой ступени (при давлении 20 кПа) и второй ступени (при вакууме 80 кПа) с выделением при 80—90 °С чистого ацетилена и нагреве с водяным паром (ПО—116°С) фракции высших гомологов ацетилена регенерации растворителя (удаления твердых продуктов полимеризации гомологов ацетилена) сжигания отходов производства в печи (сажи из сажеотстойников продуктов "полимеризации, выделенных при регенерации растворителя высших гомологов ацетилена, полученных на второй ступени фракционной десорбции). [c.28]

    Хемосорбционные методы. Очистка газов водными растворами этаноламинов. При подготовке различных технолог [с-ских газов к переработке (в частности, пирогаза к разделению) используют хемосорбцию диоксида углерода этаполамицамн. [c.48]

    Процесс щелочной очистки газов является экономичным. Однако при высоких концентрациях в газе сероводорода и диоксида углерода (>0,3 %) перед щелочной очисткой следует использовать очистку раствором моноэтаноламина. Сухой газ и пропан-пропиленовая фракция на промышленных установках ЦГФУ и АГФУ, газы регенерации на установках гидроочистки и пирогаз на установке ЭП-300 предварительно очищаются от сероводорода и частично от диоксида углерода раствором моноэтаноламина, затем подвергаются доочистке щелочью от меркаптанов и диоксида углерода. Расход гидроксида натрия при этом не превышает 0,16 кг на 1000 м газа. [c.115]

    Очистка пирогаза. Газ пиролиза содержит некоторое количество микрспримесей СО, СО2, НдЗ, 2 2, а также ацетиленовых и диеновых углеводородов. Для удаления их применяют процессы регенеративной и щелочной очистки, метанирования, гидрирования и др. Удаление двуокиси углерода и серу-содержащих соединений осуществляется путем регенеративной и щелочной очистки на стадии компримирования. Чаще всего применяют этаноламиновую регенеративную очистку после третьей ступени компримирования. Для щелочной очистки используют 5—10%-ный раствор NaOH. Для сернистого сырья рекомендуется применять комбинированный метод регенеративная очистка + доочистка щелочью. [c.104]

    Насосная очистки пирогаза, компрессорная Установка газоразделения Деазраторная, тепловой пункт Операторная  [c.533]

    Получение низших олефинов. Головными производствами нефтехимических комплексов и заводов являются установки получения низших олефинов, состоящие из отделений пиролиза углеводородного сырья, газоразделения, переработки жидких продуктов пиролиза. Исследования в области пиролиза и газоразделения ведутся Всесоюзным научно-исследовательским институтом органического синтеза (ВНИИОС), а в области переработки жидких продуктов пиролиза — ВНИИОС, Институтом горючих ископаемых, ВНИИОлефин, а также НИИ сланцев. Для проектирования процесса пиролиза выдаются следующие данные характеристика сырья и состав продуктов пиролиза, температура процесса, время пребывания сырья в зоне реакции (время контакта), расход водяного пара, парциальные давления углеводородов в зоне реакции. При разработке проекта отделения газоразделения используют рекомендации по очистке пирогаза от сероводорода, двуокиси углерода, ацетилена и диеновых углеводородов, осушке газа, последовательности выделения легких углеводородов. [c.43]

    Для наиболее эффективного удаления из газов двуокиси углерода, сероводорода, сероокиси углерода и сернистых органических соединений в последнее время начинают использовать двухступенчатую промывку газа холодной, а затем горячей щелочью. Такую схему очистки пирогаза от СО а, и сероорганических соединений применяют в агрегате, разработанном б. Гипрогазтонпромом. В этом агрегате при холодной щелочной промывке при 35° С удаляются из газа двуокись углерода и сероводород. Частично при этом снижается и содержание органической серы. Горячая промывка щелочью производится при 85° С под давлением 40 ат, В этих условиях содержание органической серы резко снижается до 1 мг1м . [c.307]

    Верхняя часть колонны предназначена для отмывки пирогаза от щелочи конденсатом. Свежий 20 %-ный раствор щелочи непрерывно подается в средний контур циркуляции с таким расчетом, чтобы концентрация щелочи в отработанном растворе составляла 3% (масс.). Очистка проводится при температуре около 40 °С и давлении 0,9 МПа. Работа установок щелочной очистки сслож- [c.45]

    Пирогаз, содержащий по 8-10% ацетилена и этилена, очищают от смолы и высших гомологов ацетилена и этилена, осушают и подвергают гидрохлорированию (по схеме метода 1, только под давл. до 0,61 МПа). После выделения В. этилен поступает на хлорирование до ДХЭ (0,51 МПа кипящая реакц. среда), к-рый выделяют из реакц. газов конденсацией и после ректификации дегидрохлорируют (по схеме метода 2, только под давл. 1,0 МПа). 4) Наиб, распространение получил процесс получения В. из этилена по сбалансированной по хлору схеме (см. ниже). Этилен примерно в равных кол-вах подают в реакторы прямого и окислит, хлорирования. Катализатор окислит, хлорирования - СиС на носителе. Образовавшийся на обеих стадиях ДХЭ после очистки и сушки объединяется, подвергается ректификации и дегидрохлорированию по схеме метода 2 (условия дегидрохлорирования, как в методе 3). Побочные продукты (до 100 кг на 1 т В.) в основном м.б. переработаны в перхлоруглеводороды. [c.374]

    Схемы промышлеш1ых уставовок. Производительность совр. установок П. по этилену достигает 300, 450 и 600тыс. т/год Принципиальная технол. схема установки производительностью 300 тыс. т/год включает узлы собственно П., а также узлы подготовки, компримирования, очистки, осушки и разделения пирогаза (рис. 2). [c.536]

Таблица Х-4. Расход растворителя Ь (в м /ч), веобходиэолй для очистки 10 ООО м /ч пирогаза Таблица Х-4. <a href="/info/95103">Расход растворителя</a> Ь (в м /ч), веобходиэолй для очистки 10 ООО м /ч пирогаза
    Если селективность растворителя по отношению к системе ацетилен — двуокись углерода меньше 3—5, более выгодна предварительная очистка пирогаза от двуокиси углерода. В качестве примера можно привести схему выделения ацетилена из пирогава с помощью метанола при низкой температуре. [c.472]

    Из колонны нирогаз направляют в колонну 19 для тонкой очистки от СО2 щелочным раствором, содержащим около 100 г/л NaOH. Температура процесса щелочной абсорбции 27 °С, давление 8,3-10 Па (8,5 кгс/см ). Свежая щелочь орошает только верхнюю часть колонны через остальную часть с помощью насоса 20 циркулирует раствор из куба колонны для поддержания требуемой плотности орошения. Из цикла насоса 20 отбирают карбонизованный раствор щелочи. На выходе из колонны 19 в пирогазе остается лишь около 100 см /м СО2- Такой очищенный газ, содержащий только ацетилен и компоненты первой группы, может далее поступать на абсорбцию ацетилена жидким аммиаком. [c.478]


Смотреть страницы где упоминается термин Пирогаз очистка: [c.161]    [c.254]    [c.116]    [c.257]    [c.537]    [c.353]    [c.353]   
Очистка технологических газов (1977) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте