Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионные потенциалы на жидкостных границах

    Разность потенциалов может возникать не только между двумя металлами в электролите, но и при контакте двух растворов, различающихся по составу или концентрации. Эта разность потенциалов называется потенциалом жидкостной границы, а его знак и размер определяются относительной подвижностью ионов и различием их концентраций на границе жидкостей. Например, через границу раздела между разбавленной и концентрированной соляной кислотой ионы Н" движутся с большей скоростью, чем 1 (подвижности при бесконечном разбавлении равны, соответственно, 36-10 и 7,9-10" см/с). Таким образом, разбавленный водный раствор приобретает положительный заряд по отношению к концентрированному. Ионы К" и СГ имеют примерно одинаковую подвижность, поэтому диффузионные потенциалы на границе между разбавленным и концентрированным КС1 невелики по сравнению с НС1. Если растворы НС1 насыщены КС1 и ток через границу жидкостей переносится в основном ионами К" и СГ, то потенциал жидкостной границы очень мал. Когда имеется граница соприкосновения двух жидкостей, использование насыщенного раствора КС1 позволяет уменьшить потенциалы жидкостной границы. [c.42]


    Если предоставить элементу (IV. 1) разряжаться самопроизвольно, то происходит реакция, данная уравнением (11.26). Ионы водорода и хлора образуются в эквивалентных количествах, но не в одной и той же среде. Таким образом, выгодно определять стандартный потенциал Е° + Ед, входящий в э.д.с. элемента (1V.1), при условии, что раствор х заменен без изменения жидкостного потенциала вспомогательного электрода гипотетическим раствором, с активностью ионов водорода, равной единице. Следует помнить, что обычный стандартный потенциал, обозначенный Е°, условно относится к такому состоянию исходных веществ и продуктов протекающей в элементе реакции, когда их активность равна единице, а диффузионный потенциал на границе элиминирован. Поскольку активность С1 во вспомогательном каломельном электроде постоянна (хотя и неопределима), удобно ввести величину Е°, связанную с Е° следующим образом  [c.67]

    К наиболее важным воспроизводимым жидкостным соединениям относятся соединения типа непрерывного ряда смесей , со свободной диффузией и проточное. Данные Гуггенгейма показывают, что диффузионный потенциал жидкостного соединения [21], если его осуществить в виде соединения с непрерывным рядом смесей, отличается только на 0,4 мв от диффузионного потенциала, возникающего на границе со свободной диффузией. Потенциал проточной границы, по-видимому, отличается на [c.238]

    К наиболее важным воспроизводимым жидкостным соединениям относятся соединения типа непрерывного ряда смесей , со свободной диффузией и проточное. Данные Гуггенгейма показывают, что диффузионный потенциал жидкостного соединения [21], если его осуществить в виде соединения с непрерывным рядом смесей, отличается только на 0,4 мв от диффузионного потенциала, возникающего на границе со свободной диффузией. Потенциал проточной границы, по-видимому, отличается на 1 мв [ПО]. Влияние, оказываемое введением соединительного раствора хлорида на потенциалы первых двух видов жидкостных соединений, показано на рис. IX. 8, построенном по данным Гуггенгейма. [c.238]

    Вместо водородного можно применять стеклянный электрод с водородной функцией, вместо каломельного — другой электрод сравнения. Концентрированный раствор хлорида калия (обычно 3,5 М или насыщенный) применяют в цепях (3.11) и (3.12) с целью уменьшения диффузионного потенциала на границе со стандартным или исследуемым раствором предполагается, что перенос тока на жидкостной границе осуществляется в основном ионами К+ и С1 , подвижности которых в водных растворах близки. [c.53]


    Часто в опыте, в котором скорость коррозии измеряется беспрерывно, определяется также общий потенциал (фиг. 142). Сосуд, в котором протекает коррозия, соединяется жидкостным мостиком (полоской фильтровальной бумаги или перевернутой U-образной трубкой, наполненной раствором соли с агар-агаром) с промежуточным сосудом с раствором, который уменьшает диффузионный потенциал на границе соприкосновения двух растворов (обычно концентрированный раствор хлористого калия). Этот сосуд соединяется с каломельным электродом или хлорсеребряный электродом. Время от времени при помощи потенциометра измеряют потенциал. В настоящее время при таких измерениях предпочитают пользоваться ламповым потен- [c.728]

    Процесс, вызывающий появление э.д.с. в цепях такого рода, заключается в переносе электролита из концентрированного раствора в разбавленный концентрационные цепи второго рода называются поэтому также цепями с переносом. Существование между двумя растворами границы, через которую совершается перенос ионов и где локализуется диффузионный потенциал, позволяет определять их также как цепи с жидкостной границей. [c.198]

    Таким образом, активность выражает собой эффективную концентрацию какого-либо вида ионов. Наиболее точно среднеионный коэффициент активности определяют методом измерения э. д. с. Для этого применяют гальванический элемент без жидкостных границ (отсутствует диффузионный потенциал). [c.309]

    Приведенные значения Е даны без учета диффузионного потенциала на жидкостной границе между КС1 и исследуемым раствором, который при использовании сильных кислот увеличивает абсолютную величину Е на несколько милливольт. [c.44]

    В сдвоенных цепях две простые химические цепи соединяются в одну через проводник I рода. Жидкостная граница при эгом отсутствует, и поэтому в отличие от концентрационных цепей И рода в сдвоенных цепях диффузионный потенциал не возникает. [c.82]

    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор —отрицательных. Поскольку растворы приобретают электрические заряды, то скорость диффузии катионов уменьшается, анионов увеличивается, и с течением времени эти скорости становятся одинаковыми. В стационарном состоянии электролит диффундирует как единое целое. При этом каждый раствор имеет заряд, и разность потенциалов, установившаяся между, растворами, соответствует диффузионному потенциалу. Расчет диффузионного потенциала в общем случае затруднителен. С учетом некоторых допущений Планком и Гендерсоном выведены формулы для расчета срд. Так, например, при контакте двух растворов одного и того же электролита с различной активностью (а > ап) [c.472]

    Если бы в такой цепи отсутствовал диффузионный потенциал, то равновесная разность потенциалов на ее концах равнялась бы ЭДС. Однако наличие жидкостной границы приводит к изменению разности потенциалов. [c.232]

    Скачок потенциала на границе металл — металл (межфаз-ный гальвани-потенциал) возникает вследствие преимущественного перехода электронов из одной металлической фазы в другую. Его приравнивают величине контактной разности потенциалов. Скачок потенциала между двумя контактирующими жидкостями называется фазовым жидкостным потенциалом, если растворителями являются две несмешивающиеся жидкости. Если растворы различаются только природой или концентрацией электролита, то возникающая разность потенциалов называется диффузионным потенциалом. [c.315]

    Коэффициент активности выражается отношением средней ионной активности к общей моляльной концентрации раствора электролита =а 1т. Активность выражает эффективную концентрацию какого-либо вида ионов. Наиболее точно среднеионный коэффициент активности определяют методом измерения э. д. с. Для этого применяют гальванический элемент без жидкостных границ — элемент без переноса (отсутствует диффузионный потенциал). [c.307]

    Более сложен случай жидкостного соединения, образующегося при соприкосновении двух растворов, содержащих различные электролиты. Гендерсон, исходя из представления о жидкостном соединении как непрерывном ряде смесей двух растворов и линейности изменения концентрации ионов в переходном слое, вывел уравнение — уравнение Гендерсона — для диффузионного потенциала, возникающего на границе двух разбавленных растворов различных электролитов  [c.517]


    Численное значение э. д. с. (без учета диффузионного потенциала на жидкостной границе) равно 0,34 в. Очевидно, это соответствует потенциалу одного только медного электрода в растворе с.активностью ионов меди, равной.единице. Иначе говоря, эта величина равна нормальному потенциалу медного электрода первого рода. [c.80]

    Влияние диффузионного потенциала на величину общей э. д. с. гальванического элемента, в котором имеются жидкостные границы, хорошо видно из рис. 48. [c.91]

    Если более концентрированным раствором в цепи является правый раствор (Сг > С]), то диффузия А КОз происходит справа налево через границу между раство >ами. Так как подвижность аниона КОз больше, чем катиона А , то слева от границы (иногда ее называют жидкостным контактом) появится избыточный отрицательный заряд, а справа - положительный. При этом между фазами одинакового состава возникает разность потенциалов -диффузионный потенциал, который постепенно уменьшается по мере удаления от границы в глубь раствора и становится равным нулю. Диффузионный потенциал возникает также на границе растворов двух различных электролитов. Наличие диффузионного по-104 [c.104]

    В начале настоящей главы излагаются основные принципы метода электродвижущих сил, описываются условные обозначения для гальванических элементов, а также условия, касающиеся знаков электродвижущей силы и стандартных электродных потенциалов. Затем излагается термодинамика гальванических элементов с жидкостными соединениями и без жидкостных соединений, причем это изложение связывается с результатами исследований растворов. Далее подробно рассматриваются гипотетический потенциал жидкостного соединения, понятие об электрическом потенциале на границе раздела фаз, проблема индивидуальных химических потенциалов и активностей ионов. В конце главы обсуждается вопрос о тех ограничениях, которые возникают при использовании элементов с жидкостными соединениями из-за наличия диффузионных потенциалов, а также описывается удобный способ устранения последних. [c.285]

    Строение жидкостной границы. Точное измерение pH возможно только при условии, что диффузионный потенциал между соединительным и исследуемым растворами скомпенсирован диффузионным потенциалом между соединительным и стандартным растворами. Первостепенное значение для определения воспроизводимости, постоянства и, до некоторой степени, величины диффузионного потенциала имеет физическое строение жидкостного соединения между мостиком, содержащим концентрированный солевой раствор, и исследуемым раствором х. Диффузия ионов в обоих направлениях через четкую, правильно образованную жидкостную границу быстро приводит к устойчивому состоянию, которое характеризуется воспроизводимой постоянной разностью потенциалов. [c.236]

    Теоретически и экспериментально показано, что потенциал на границе между двумя растворами одной и той же соли разных концентраций не зависит от способа образования жидкостного соединения. Однако эта зависимость возникает, когда граничащие растворы содержат ионы разного вида. Концентрированный соединительный раствор устраняет, хотя и не полностью, колебания в значениях потенциала, возникающие вследствие образования неопределенных граничащих структур. Тем не менее, следует считать возможным точное воспроизведение физического строения жидкостной границы при условии установления наиболее воспроизводимого диффузионного потенциала. [c.236]

    Жидкостное соединение со свободной диффузией легко получить, если соединить два раствора для первоначального образования резкой границы в вертикальной трубке или у крана с широким отверстием. Если выполняется цилиндрическая симметрия, то переходный слой со временем удлиняется, но потенциал сохраняет постоянное значение. К сожалению, нет однозначной формулы для выражения диффузионного потенциала этого типа. Принимается, что свежеобразованная жидкостная граница рассматриваемого типа хорошо согласуется с жидкостным соединением по типу непрерывного ряда смесей и, следовательно, может быть описана с помощью уравнения Гендерсона. Соединение со свободной диффузией, образованное агар-агаровым мостиком с хлоридом калия, также является воспроизводимым и устойчивым. Э. д. с. немного отличается от значения, полученного с мостиком без агар-агара. [c.237]

    Остаточный диффузионный потенциал. Измерения pH, произведенные с хорошими вспомогательными электродами и с наиболее воспроизводимыми жидкостными соединениями, содержат ошибку, вызванную остаточным диффузионным потенциалом (см. главу III). Эта ошибка возникает из-за неравенства диффузионных потенциалов на границах  [c.244]

    В заключение отметим, что в ходе сделанных выводов не был принят во внимание потенциал жидкостной границы, на которой соприкасаются растворы 2п504 и Си304 (диффузионный потенциал). [c.83]

    На рис. 10 изображена гальваническая цепь, в которой имеется только один раствор электролита. Обычно встреча ются более сложные цеи1и, в которых два металла находятся в различных растворах, но это не вносит каких-либо принципиальных изменений. Просто приходится учитывать дополнительно окачок потенциала на границе двух растворов (потенциал жидкостной границы, или диффузионный лотенциал). [c.25]

    В заключение отметим, что в ходе сделанных выводов не был принят во внимание потенциал жидкостной границы, на которой соприкасаются растворы 2п504 и СиЗО (диффузионный потенциал). Однако погрешность, обусловленная им, не так велика. [c.81]

    Гораздо чаще, однако, электрод сравнения помещают в другой раствор, который при помощи электролита соединяют с анализируемым. Тогда из-за различия концентраций веществ в по-луэлементах ячейки, а также из-за различия подвижностей катионов и анионов, образующих растворенные вещества, на границе раздела жидких фаз возникает дополнительно потенциал жидкостного соединения, называемый также диффузионным потенциалом, устойчивость значения которого во многом зависит от способа образования жидкостной границы. [c.233]

    К гальваническим элементам с переносом иопов относят те, у которых в непосредственном контакте находятся растворы разных электролитов или одинаковых электролитов с различной концентрацией. На жидкостной границе между полуэлемен-тами возникает диффузионный потенциал, папример в элементе ( — )2п 2п2+, aq u2+, aq Сы( + ) [c.135]

    Согласно равенству (11.2) ЭДС электрохимической цепи включает диффузионный потенциал. Однако расчет и экспериментальное определение диффузионного потенциала затруднительны, поэтому фдифф стараются свести к минимальной величине. Для этого заполняют электролитический (солевой) мостик, представляющий собой П-образную трубку, насыщенным раствором электролита с близкими подвижностями ионов (обычно КС1). Электролитический мостик располагают между растворами, поэтому вместо одной жидкостной границы возникают две. Так как концентрация ионов в растворе электролитического мостика выше, чем в растворах, то через жидкостные границы диффундируют практически только ионы К и С1. На обеих границах возникают малые и противоположные по знаку диффузионные потенциалы, которые взаимно [c.167]

    В разд. IX. 3 рассмотрены гальванические элементы с переносом без разделения их э. д. с. на отдельные потенциалы. Такой подход является термодинамически строгим. Однако для практических целей иногда необходимо оценить значение диффузионного потенциала, возникающего на границе раздела соприкасающихся жидкостей. Остановимся на простейшем случае, когда жидкостное соединение образуется при соприкосновении двух растворов одного и того же I—1-электролйта с концентрациями с и с". [c.516]

    Гальванические элементы с жидкостной границей содержат полуэлемент, обратимый к определенному виду ионов, или окислительно-восстановительный и сравнительный полуэлемент с известным электродным потенциалом Афер. Измеренная э.д.с. включает неизвестный диффузионный потенциал. Применение солевого моста, заполненного электролитом, ионы которого обладают примерно равной подвижностью, и стандартизация измерений э. д. с. элиминирует диффузионный потенциал или, по-крайней мере, уменьшает и стабилизирует его. С помошью гальванического элемента с жидкостной границей определяют ионный показатель (водородный, металлический, анионный) рА = = —IgiiA, так как Д<р = Афер = Аф° ( /n)lgaA. [c.633]

    Диффузион1 ый потенциал возникает на границе жидкостного соединения вследствие различия в скоростях диффузии катионов и анионов, при наличии градиента концентрации. Различная скорость диффузии ионов нарушает электрическую нейтральность в тонком пограничном слое и является причиной возникновения скачка потенциала. Диффузионный потенциал нельзя считать равновесным, хотя его величина в условиях стационарной диффузии может оставаться неизменной в течение длительного времени. Вместе с тем диффузионный потенциал отвечает незначительному отклонению от равновесного состояния, поэтому вполне возможна его термодинамическая трактовка. [c.213]

    Определить диффузионный потенциал фд на границе растворов НС1 (либо H2SO4) трех-четырех концентраций измерением э. д. с. концентрационных цепей анионного и катионного типов, а также цепей с переносом и без переноса. Определить уменьшение суммарной величины фд, если жидкостное соединение заменить солевым мостиком. [c.146]

    Отметим еще следующее обстоятельство поскольку для элементов, рассматриваемых в данном параграфе, характерно отсутствие границы раздела между растворами одного и того же электролита при различных концентрациях или между двумя растворами разных электролитов, то их называют элементами без жидкостного соединения . Однако нельзя считат з, что в таких элементах совершенно отсутствуют градиенты концентрации, так как, например, хлористое серебро обладает некоторой растворимостью. Если весь раствор насыщен хлористым серебром, то серебро будет осаждаться на водородном электроде и изменять величину его потенциала если же раствор не насыщен хлористым серебром, то возникает некоторый градиент концентраций ионов серебра и хлора и в результате появляется некоторый, хотя и незначительный, диффузионный потенциал. Это обстоятельство имеет место для всех элементов, составленных из электродов такого типа. Очевидно, чем меньше растворимость данной соли, тем точнее реальный элемент соответствует идеальному элементу без жидкостного соединения. [c.291]

    Зёренсен придерживался, в основном, той техники определения, которая ранее предложена Бьеррумом [14]. Была сделана попытка элиминировать диффузион- g ный потенциал на жидкостных границах методом экстраполяции Бьер-рума [15]. Для этой цели проводили два измерения э. д. с. элемента (И. 8) для каждого раствора х с солевым мостом из 3,5 и 1,75 н. растворов КС1, помещенным между двумя полуэлементами. Наблюдаемую разность потенциалов добавляли к а. д. с. цепи с более концентрированным солевым мостом или вычитали из нее (рис. П. 1) для того, чтобы получить гипотетический потенциал, соответствующий солевому мосту с бесконечно большой концентрацией (1/с = 0), при которой диффузионный потенциал становится равным нулю. Очевидно, такая процедура действительно приведет диффузионный потенциал к пренебрежимо малой величине только в том случае, когда наблюдаемая разность э.д.с. мала [16, 17]. Михаэлис [18] считает, что экстраполяцию Бьеррума следует применять тогда, когда концентрация ионов водорода или гидроксила в исследуемом растворе превышает 0,001 г-ион/л. [c.29]


Смотреть страницы где упоминается термин Диффузионные потенциалы на жидкостных границах: [c.89]    [c.117]    [c.243]    [c.174]    [c.22]    [c.163]    [c.181]    [c.394]    [c.299]    [c.32]    [c.243]   
Смотреть главы в:

Коррозия и борьба с ней -> Диффузионные потенциалы на жидкостных границах




ПОИСК





Смотрите так же термины и статьи:

Диффузионный потенциал тип границы

Потенциал диффузионный

Потенциал на границе фаз



© 2025 chem21.info Реклама на сайте