Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория поля лигандов. Магнитные свойства комплексных соединений

    Магнитные свойства комплексных соединений хорошо описываются с позиций теории кристаллического поля. Эта теория основана на предположении, что между комплексообразователем и лигандами осуществляется чисто электростатическое взаимодействие. Однако, в отличие от классических электростатических представлений, в теории кристаллического поля учитывается пространственное распределение электронной плотности -орбиталей комплексообразователя. [c.205]


    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    Теория поля лигандов объединяет в той или иной мере идеи теории электростатического взаимодействия, метода валентных связей, теории кристаллического поля и метода молекулярных орбиталей. Теории поля лигандов и молекулярных орбиталей способны объяснить строение комплексов, энергию связи, магнитные свойства комплексных ионов, их окраску (спектральные свойства), а также иногда объяснить реакционную способность комплексных соединений. [c.210]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]

    Теорию валентных связей (ВС) широко применяли химики до появления теории поля лигандов, а теория была сформулирована в основном Полингом вскоре после возникновения квантовой механики, и она непосредственно развивала представления Льюиса — Лангмюра — Сиджвика о координационной связи, основанные на квантовой механике. В настоящее время теория валентных связей еще сохраняет некоторое значение для качественного объяснения стереохимии, магнитных и некоторых других свойств комплексных соединений. Учитывая, что с 1935 г. до конца 50-х годов в литературе по координационной химии эту теорию применяли очень широко, здесь необходимо коротко изложить ее, а также установить связь между методом ВС и другими более совершенными методами. [c.107]

    Теория поля лигандов дает простую модель для описания связей в комплексных соединениях переходных металлов и позволяет выяснить, как влияют лиганды на вырождение пяти -орбиталей металла. Рассмотрение такого влияния, как будет показано в этой и следующих главах, помогает понять и даже до некоторой степени предсказать строение, спектры и магнитные свойства комплексов. [c.91]

    Классический вариант метода валентных связей, описанный выше, мало используется химиками-неорганиками для интерпретации данных экспериментальных исследований комплексных соединений. Предсказание геометрической формы простых соединений по методу валентных связей, как правило, хорошо подтверждается практикой. Для комплексных соединений такое предсказание основано на результатах предварительного определения магнитных свойств. Предпринимались попытки улучшить метод валентных связей наибольшее распространение при объяснении связей в комплексных соединениях получила теория поля лигандов, простейший вариант которой (теория кристаллического поля) изложен ниже. [c.252]

    Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохимическом ряду, а также сам факт образования [c.589]

    Теорию кристаллического поля продуктивно используют для объяснения энергий стабилизации, магнитных свойств, окраски комплексов и скорости обмена лигандов. При этом исходят из экспериментальных данных о строении координационных сфер и их энергетике, почти не предсказывая их. Иными словами, первые два вопроса, поставленные в начале этого раздела, оставляют без ответов. Наиболее полное объяснение строения и свойств комплексных соединений дает теория поля лигандов. [c.237]

    Теория поля лигандов оказалась очень полезной для объяснения окраски, магнитных и других свойств комплексов. Однако, она не может объяснить свойства комплексных соединений, в которых доля ковалентной составляющей связи велика, а также стехиометрию и некоторые свойства комплексов. Она неприменима к комплексам 5- и / -элементов. Сочетание методов ВС и теории поля лигандов расширяет возможности объяснения свойств комплексов. Более широкие возможности для описания комплексов имеет метод МО (см. гл. 2), но он достаточно сложен. [c.80]

    Некоторые свойства комплексных соединений. Теория поля лигандов и метод ВС позволяют предсказать некоторые свойства комплексных соединений, такие как прочность комплексов, магнитные свойства и окраска соединений. И наоборот, из экспериментов по изучению свойств комплексных соединений можно судить об электронной структуре комплексов. Прочность комплексов будет рассмотрена позднее (см. гл. 8). [c.80]

    ТКП предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си +, Сг + и др.). Эта теория объясняет цвет соединений, связывая спектры комплексов с — -переходами электронов, а также магнитные свойства комплексов - и /-катионов. Для 5 р -катионов ТКП не дает каких-либо интересных результатов. Она мало пригодна также для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии л-взаимодейст-вия. [c.60]


    При относительной простоте теория кристаллического поля оказалась полезной при решении таких вопросов химии комплексных соединений, как их магнитные свойства, происхождение спектров, изменение ряда физических свойств в рядах сходных комплексов, количественные характеристики и -г. п. Вместе с тем эта теория имеет и недостатки, основной из которых состоит в пренебрежении электронной структурой лигандов, приводящее к игнорированию возможности образования различного типа ковалентных связей между центральным ионом и лигандами. Этот недостаток был устранен использованием метода МО к координационным соединениям переходных элементов. [c.120]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Магнитные свойства комплексных соединений хорошо описываются с позиций теорци кристаллического поля. Эта теория основана на предположении, что между комплексообразователем и лигандами осуществляется [c.198]

    Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохнмическом ряду, а также са.м факт образования некоторых ком плексов, например, так называемых сэндвичевых соединений — дибензолхрома Сг(СбНб)2, ферроцена Fe ( 51 5)2 и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный ион, не принимает во внимание участия электронов лигандов в образовании химических связей с центральным ионом. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным характером связи между центральным атомом и лигандами. [c.598]

    Итак, мы познакомились со всеми параметрами, которые определяют распределение электронов в комплексе, и после этого рассмотрим на нескольких примерах их взаимосвязь. Почему, например, [Ре(Н20)вР проявляет обычные магнитные свойства, обусловленные спином, а [Ре(ОЫ)в не проявляет их Это объясняется тем, что в первом случае поле лигандов значительно слабее [1),(Н20) <Д,(СЫ)] и 5-стабилизации оказывается недостаточно, чтобы компенсировать их влияние. Далее становится ясным, что -конфигурация скорее всего будет иметь высокий спин , так как разность энергии в 5-еди-ницах между таким состоянием и конфигурацией с низким спином значительно больше, чем с любой другой конфигурацией. Кроме того, понятно, что при равных Д, для -конфигурации более характерен низкий спин , чем для й , так как величина С в обоих случаях одинакова, а разность энергии в 5-единицах по отношению к -конфигурации равна 4, а по отношению к / -конфигурации — 6. Если учесть также случай тетраэдрической симметрии (в табл. А.27 сопоставлены энергии в О,-единицах для октаэдрических и тетраэдрических комплексов), то можно сделать еще один вывод ионы 2п +, Ре + и ТР+, которые имеют либо 5, либо 10 -электронов, образуют менее прочные тетраэдрические комплексы, чем другие ионы, — для них всегда характерна октаэдрическая симметрия. ЭСКП для тетраэдрической симметрии максимальна для двух (соответственно семи) -электронов в случае высокого спина и для 4 -элeктpoнoв в случае низкого спина (табл. А.27). Поэтому Т1 +, У +, Со=+ при высоком спине и Сг + при низком спине одинаково склонны образовывать тетраэдрические комплексы. Таким образом, электростатическая теория комплексных соединений, или теория поля лигандов, позволяет хорошо объяснить многие закономерности, наблюдаемые в химии комплексных соединений. [c.135]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Кроме того, оказалось, что эти представления не могут объяснить некоторых структурных особенностей комплексов и магнитных и оптических свойств их. Сделано это было с привлечением квантовомеханических представлений о строении атома применительно к комплексным соединениям. На этой основе созданы три теории, объяснившие химическую связь в комплексах и их электронное строение теЬрия валентных связей, теория кристаллического поля и теория поля лигандов. Рассмотрим кратко только основные положения двух последних теорий, которые находят сейчас самое широкое применение. [c.71]

    В теории комплексных соединений переходных элементов нашла широкое применение т. н. теория ноля лигандов, тесно связанная с квантово-механич. теорией атомных спектров ионов-комплексообразова-телей и с общей теорией симметрии (теорией групп). В теории поля лигандов образование комплексного соединения рассматривается как результат электростатич. взаимодействия между центральным ионом переходного элемента и лигандами. Под действием электростатического поля лигандов (моделируемого обычно в виде поля точечных зарядов или точечных диполей), обладающего кубической (или более низкой) симметрией, происходит расщепление -уровней центрального иона, к-рое вызывает стабилизацию комплекса. Теория поля лигапдов оказалась пригодной для объясне1шя ряда закономерностей электронной структуры комплексных соединений, а также их оптических и магнитных свойств. Для более точного описания электронной структуры ко.мплексных соединений чисто электростатич. теория поля лигандов дополняется с учетом возможности образования в известной мере ковалентных связей между центральным ионом п лигандами такая уточненная теория использует представления о гибридизации волновых функций центрального иона и представляет собой синтез теории поля лигапдов либо с методом валентных схем, либо с методо.м молекулярных орбит. [c.266]

    Электронная оболочка центрального иона рассматривается на основе квантовомеханической теории. Влияние электрического поля, создаваемого лигандами ( кристаллического поля), приводит к расщеплению уровня энергии (терма) внешних электронов центрального иона. Расщепление терма мало влияет на полную энергию комплексного соединения, но оказывает существенное влияние на многие его свойства магнитные, оптические, структурные, термодинамические и кинетические. Эффект расщепления терма зависит не только от числа лигандов, но и от их расположения, т. е. симметрии поля. [c.121]

    В отличие от других электростатических теорий химической связи здесь центральный ион рассматривается не просто как заряженная частица, строение его внешней электронной оболочки детализируется на основе квантовой механик1г. Модель Бете основана на идее, что в комплексе электроны центрального атома испытывают влияние электрического поля, создаваемого лигандами ( кристаллического поля ). Это приводит к расщеплению уровней энергии внешних электронов центрального иона (эффект Штарка, см. 14). Расщепление терма мало влияет на полную энергию комплексного соединения, но оказывает существен1юе влияние на многие его свойства магнитные, оптические, структурные, термодинамические и кинетические. Эффект расщепления терма зависит не только от числа лигандов, но и от их расположения, т. е. от симметрии поля. [c.237]

    Следует учесть, что взаимодействие молекулы с внутренними орбиталями атома требует иного теоретического подхода [33]. Распространение квантовой механики на комплексные соединения привело к развитию методов поля лигандов, позволивших значительно продвинуться в исследовании оптических и магнитных свойств твердого тела [34]. В связи с этщм мне кажется весьма перспективной первая попытка авторов [35] применить метод теории групп к установлению особенностей поверхностных состояний на основе данных спектров ЭЯМР. Необходимо учесть, что способность к образованию донорно-акцепторных связей не ограничивается типичными катионами переходных элементов. В работе [36] показана возможность образования подобных связей у большого числа других элементов, в частности окислов Si, Ge, Zn. Класс молекул, вступающих в донорно-акцепторное взаимодействие, очень велик. В него входит и огромное число органических молекул с сопряженными связями, способных образовывать я-комплексы. [c.28]


Смотреть страницы где упоминается термин Теория поля лигандов. Магнитные свойства комплексных соединений: [c.414]    [c.414]    [c.178]    [c.29]   
Смотреть главы в:

Общая химия. Состояние веществ и химические реакции -> Теория поля лигандов. Магнитные свойства комплексных соединений




ПОИСК





Смотрите так же термины и статьи:

Комплексные магнитные свойства

Комплексные теория поля лигандов

Лиганд свойства

Поле магнитное

Поляна теория

Теория поля лигандов



© 2025 chem21.info Реклама на сайте