Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводородные газы и их свойства

    Полигликоли добавляют к нефтяным маслам для улучшения их противоизносных свойств, а также применяют в качестве основы при изготовлении консистентных смазок. Смазки на основе полигликолей характеризуются высокой термической и коллоидальной стабильностью и хорошими низкотемпературными свойствами. Производство синтетических смазочных масел на базе полигликолевых соединений имеет достаточные сырьевые ресурсы. Исходными продуктами служат непредельные газообразные углеводороды (этилен и пропилен), которые могут быть получены из природного углеводородного газа и промышленных газов нефтеперерабатывающих заводов. [c.148]


    Основные свойства индивидуальных углеводородных газов [c.234]

    Желательно знать удельную теплоту, коэффициенты расширения и тенлонроводности масла [731. Диэлектрические свойства свежих трансформаторных масел лишь незначительно меняются в зависимости от химического состава (у предельных углеводородных газов диэлектрические свойства возрастают с длиной углеводородной цепи [74]), однако содержание механических примесей и воды существенно влияет на диэлектрические свойства. Добавка 0,1 % воды к безводному маслу снижает первоначальное значение пробивного напряжения с 250 кв на 1 см до 22 кв на 1 см дальнейшее добавление воды мало влияет на величину пробивного напряжения [75—80]. [c.566]

    В учебнике кратко изложена история развития нефтеперерабатывающей промышленности СССР, рассмотрены физико-химические свойства углеводородных газов, нефтяных фракций и нефтей, описаны подготовка их к переработке, методы выделения газового бензина из нефтяных газов, прямая перегонка нефтей на атмосферных и атмосферно-вакуумных установках, вторичная перегонка нефтяных фракций. Значительное внимание уделено аппаратурному оформлению технологических процессов,- их технико-экономическим показателям а также вопросам техники безопасности и охраны труда. [c.4]

    К термическим процессам деструктивной переработки нефтяного сырья относятся термический крекинг и коксование,—Невысокие эксплуатационные свойства как получаемых котельных топлив, так и бензинов термического крекинга и интенсивное развитие каталитических процессов способствовали тому, что новые установки термического крекинга почти не сооружаются, а многие из существующих реконструируются в установки прямой перегонки нефти. Термический крекинг как процесс получения бензина уже в 40-х годах начал интенсивно вытесняться каталитическим крекингом и риформингом. Основным видом термического крекинга остался так называемый висбрекинг, направленный на получение из тяжелых/ нефтяных остатков (гудронов, полугудронов) котельного топлива При этом образуются также углеводородный газ и бензин. Более [c.70]

    Растворяющая способность тех или иных надкритических газовых растворителей в сильной степени зависит от их плотности, температуры и давления. Большое значение имеет также их вязкость, так как она характеризует транспортные возможности сжатых газов. Поэтому физические и термодинамические свойства надкритических флюидов заслуживают особого внимания. Но в связи с небольшим объемом книги здесь дается характеристика свойств лишь некоторых газов, принимающих наибольшее участие в природных, а также в технических процессах. К таким газам относятся углеводородные газы, углекислый газ и надкритический водяной пар. Кроме того, для примера приведены данные, характеризующие изменение плотности и вязкости некоторых газов при растворении в них веществ. [c.16]


    В книге дана характеристика растворяющих и селективных свойств различных надкритических флюидов по отношению ко многим органическим и неорганическим веществам. Показана роль таких флюидов как растворителей в различных технических и природных процессах. Большую роль играют сжатые углеводородные газы как растворители жидких УВ в процессах их первичной и вторичной миграции в осадочных породах, приводящих к образованию и переформированию залежей углеводородов. Рассмотрены также основные закономерности этих процессов. [c.153]

    Нервные (нейротропные) яды поражают главным образом центральную нервную систему и часто обладают наркотическими свойствами. К их числу относятся продукты переработки нефти (бензин, керосин, предельные и непредельные углеводородные газы, углеводороды ароматического ряда), сероводород, тетраэтилсвинец, метанол, аммиак и др. [c.41]

    Сырье и продукция. Сырьем процесса являются газойли, топливные (дизельные, печные) и маловязкие масляные фракции. Целевая продукция — низкозастывающие газойли, топлива и масла. Побочная продукция — углеводородные газы и жидкие бензино ые фракции. Свойства сырья и целевой продукции процесса приведены в табл. 2.54. [c.243]

    Как уже указывалось выше, нефтяные насосы предназначены для перекачки нефти, нефтепродуктов, сжиженных углеводородных газов и других жидкостей, сходных с указанными по физическим свойствам и коррозионному воздействию на материал проточной части насосов. Перекачиваемая жидкость не должна содержать более 0,2% твердых взвешенных частиц размером до 0,2 мм. [c.407]

    Торцовые уплотнения указанных типов применяют для уплотнения валов центробежных нефтяных насосов, перекачивающих нефть, нефтепродукты, сжиженные углеводородные газы, органические растворители, а также другие жидкости, сходные с указанными по физико-химическим свойствам. [c.422]

    В материалах [ВСС,1970] сделаны выводы о свойствах водорода с точки зрения безопасности. Для смеси водорода с воздухом свойствен широкий диапазон воспламеняемости (4 - 74%), и при разбавлении инертным газом водород способен гореть даже при содержании кислорода 5% в отличие от углеводородных газов, горящих при содержании кислорода не менее 11%. В сравнении с углеводородными газами водород имеет более высокую скорость горения. Воспламенение водорода можно осуществить искровым разрядом малой энергии, для этого достаточна 1/10 часть энергии, необходимой для зажигания углеводородных газов. Следовательно, водород легко поджечь разрядом статического электричества. (Этим объясняются случаи самовозгорания водорода.) [c.298]

    Физико-химические свойства основных, наиболее часто поступающих на переработку нефтей Советского Союза, приводятся в табл. 2.5. В табл. 2.6 содержатся данные о составе углеводородных газов до С и содержании углеводородов С5, а в табл. 2.7 —о потенциальном содержании узких фракций в нефтях. В табл. 2.8 охарактеризованы прямогонные бензины и бензиновые фракции, являющиеся сырьем каталитического риформинга, а в табл. 2.9 —средние дистилляты (керосиновые и дизельные фракции). Табл. 2.10 содержит информацию о свойствах остатков выше 350 С и выше 500°С и вакуумного дистиллята, используемого в качестве сырья каталитического крекинга (или гидрокрекинга). [c.65]

    Рассматривая физические свойства углеводородных газов, следует отметить большое различие их плотностей. Метан является наиболее легким из углеводородных газов, его плотность составляет 0,55 по отношению к атмосферному воздуху. Плотность этана близка к плотности воздуха. Пропан и бутан уже значительно тяжелее. Пары жидких углеводородов имеют плотность в 3—4 раза большую, чем плотность воздуха. [c.235]

    Углеводородные газы резко отличаются друг от друга по температурам кипения. Метан может перейти в жидкое состояние лишь при очень низких температурах. Жидкий метан кипит и превращается в газ лишь при температуре —161° С. Критическая температура метана —82° С. Следовательно, в толщах горных пород, где температура выше 0° С, ни при каком давлении метан не перейдет в жидкое состояние. Этан кипит при довольно низкой температуре (—88° С), но его критическая температура 32° С, поэтому при температуре более низкой чем 32° С и при достаточном давлении этан может перейти в жидкое состояние. Еще легче переводят в жидкое состояние пропан, бутан и изобутан. Например, для того чтобы при комнатной температуре перевести эти углеводороды в жидкое состояние, требуется давление для пропана 7—8 ат, для изобутана около 3 ат и для бутана около 2 ат. В табл. 6 приведены основные физические свойства углеводородных и некоторых других газов. [c.235]


    По своим химическим свойствам углеводородные газы довольно инертны при обычной температуре. Важнейшее используемое на практике химическое свойство углеводородных газов заключается в их способности гореть в присутствии воздуха. При высокой температуре, вызванной огнем или искрой, углеводородные газы в присутствии воздуха воспламеняются. При этом химическая реакция, [c.235]

    Еще сильнее проявляется отрицательное влияние низкой температуры охлаждающей цилиндры воды у компрессоров, предназначенных для сжатия углеводородных газов с содержанием тяжелых углеводородов. При сжатии таких газов на холодных стенках цилиндров происходит конденсация фракций, близких по своим свойствам к бензину, которые растворяют и смывают масло, причем образующийся раствор не обладает свойствами смазки. Возникающий вследствие этого износ значительно больше, чем при конденсации водяного пара. [c.319]

    В книге рассмотрены свойства нефти, углеводородных газов п важнейших нефтепродуктов. Описаны технологические схемы переработки нефти и газов, их аппаратурное оформление, контроль и регули рование, экономика и техника безопасности. [c.2]

    Из многих физических и термодинамических свойств сжиженных газов некоторые являются определяющими при решении многих вопросов безопасного транспорта, хранения, распределения и использования этого вида горючего. Кроме компонентного состава к таким параметрам относятся прежде всего плотность и упругость паров сжиженных углеводородных газов. Ниже приводится описание приборов и методов определения плотности и упругости паров сжиженных углеводородных газов. [c.5]

    МЕТОДЫ МОДЕЛИРОВАНИЯ И РАСЧЕТОВ ТЕРМОБАРИЧЕСКОЙ ЗАВИСИМОСТИ НЕКОТОРЫХ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ УГЛЕВОДОРОДНЫХ ГАЗОВ [c.109]

    Наибольшее значение имеют разнообразные углеводороды. Некоторые свойства углеводородов рядов С Н2 +о С Н2 С Н2 2 приведены в табл. 1. Как видно из приведенных данных, в одном гомологическом ряду с увеличением молекулярного веса повышается температура кипения, относительный удельный вес и теплотворная способность углеводородных газов. Отметим, что в молекулах непредельных углеводородов имеется постоянное соотношение между водородом м углеродом, тогда как по мере увеличения числа углеродных атомов [c.13]

    Некоторые свойства углеводородных газов [c.14]

    Метод газо-жидкостной хроматографии широко применяют для разделения и анализа сложных смесей углеводородных газов нормального строения, и их изомеров, а также для разделения других близких по своим свойствам веществ. [c.60]

    Специфические свойства сжиженных углеводородных газов обусловливают конструктивные особенности и специфику оборудования, в котором этот продукт транспортируется, хранится и используется. В процессе получения, транспортирования, хранения, а иногда и использования они находятся в двухфазном состоянии в жидком виде под давлением своих паров. При этом величина давления, т. е. величина упругости паров и жидкости, находящихся в равновесном состоянии (когда нет отбора паров и жидкости из емкости), зависит от двух основных факторов состава сжиженного газа и окружающей температуры. [c.233]

    Эффективность использования углеводородных газов в том или ином направлении значительно повысится, если эти газы предварительно очистить от механических твердых и жидких примесей и нежелательных газообразных компонентов (сероводород, углекислота), а углеводородную часть в случае необходимости разделить на индивидуальные компоненты или группы, близкие по своим свойствам, компонентов. В связи с этим в книге рассмотрены процессы очистки газа, а также процессы первичной переработки газа, такие, как компрессия, абсорбция, адсорбция, низкотемпературная конденсация и ректификация углеводородных газов. Обычно все эти [c.7]

    Двумя хорошо известными вариантами термического риформипг-процесса являются полиформинг-процесс [4, 21] и процесс полиформного крекинга [4] в этих процессах имеет место совместная конверсия лигроина и углеводородных газов. В первом процессе лигроин растворяет углеводороды Сз и С4, образовавшиеся в процессе риформинга, и затем смесь подается в змеевик трубчатой печи. Во втором лигроин и поток рециркулирующего газа нагреваются в двух отдельных змеевиках и только затем соединяются в третьем для окончательной конверсии. В том случае, если применяются аналогичные режимы и сырье, оба процесса дают примерно равные выходы бензинов с подобными свойствами. [c.46]

    Редукционные клапаны применяются для понижения давления газа в неответственных трубопроводах, когда применение более точных и дорогих автоматических устройств. представляется нецелесообразным (например, на азоте, предназначенном для продувки аппаратов, на подаче пара в змеевики сборников и т. п.). Применять редукционные кла.паны для снижения давлааия углеводородных газов нельзя. Вследствие того, что со временем силовая пружина теряет свои упругие свойства, ре- дукционные лапаны нуждаются в периодической настройке. [c.69]

    Первая часть учебника включает разделы, посвященные физико-химическим свойствам и классификации нефтей и нефтепродуктов, физическим методам переработки природных углеводородных газов, процессам подготовки нефти к переработке и технологии первичной переработки нефти. Вторая часть посвящена технологии вторичных методов переработки нефти и газа (термических, каталитических и гидрогенизационных), предназначенных для производства различных видов топлив и сырья для нефтехимической промышленности. В третьей части иззп1аются процессы очистки нефтепродуктов с целью, придания им товарных качеств и технология производства специальных продуктов. [c.9]

    Осушка углеводородных газов с применением жидких поглотителей относится к абсорбционным процессам, т. е. пары воды поглощаются растворителями. Одним из первых абсорбентов, применяв-1НИХСЯ еще в 1929 г. для осушки топливного газа, был глицерин. С 1936 г. для этих целей стали применять диэтиленгликоль, а несколько позже и триэтиленгликоль. Применяют также растворы солей, например хлористого кальция. Ниже приводятся физикохимические свойства гликолей, применяемых для осушки природного газа  [c.157]

    Широко иапользуетоя окислительная регенерация и для восстано влени я активности сорбентов в шроцесоах очистки углеводородных газов, масляных фракций, выделения индивидуальных веществ., Пр этом только эффективное осуществление регенерационной стадии позволяет восстановить каталитические или сор бционные свойства контактного материала и обеспечивает экономичность процесса в целом. [c.3]

    Метод 6. Закачка сухого газа высокого давления была впервые предложена советскими учеными в конце 40-х годов. Процесс вытесне ния нефти из пласта углеводородными газами высокого давления бази руется на взаимодействии родственных по составу систем в соответ ствии с их свойствами, давлением и температурой. В результате нагне тания газа высокого давления образуется переходная вытесняющая зона Свойства этой зоны формируются за счет насыщения нефти промежу [c.53]

    Другим технически важным свойством ацетилена является его раст1юримость, значительно более высокая, чем у других углеводородных газов. Так, в 1 объеме воды при 20 °С растворяется около 1 объема ацетилена, а при 60 °С растворяется 0,37 объема. Растворимость снижается в водпелх растворах солей и Са(0Н)2. Значительно выше растворимость ацетилена в органических жидкостях при 20 °С и атмосферном давлении она составляет (в объемах щетилеиа на 1 объем растворителя) в метаноле 11,2, в ацетоне 23, в диметилформамиде 32, в N-метилпирролидоне 37. Растворимость ацетилена имеет важное значение при его получении и выделении з смесей с другими газами, а также в ацетиленовых балл )нах, где для повышения их емкости по ацетилену и снижения авления используют растворитель (ацетон). [c.77]

    Стабильность к окислению бензиновых фракций дистиллятов каталитического крекинга, термических процессов переработки тяжелого нефтяного сырья и бензинов пиролиза углеводородных газов и низкиоктановых бензинов повышают путем насыщения водородом непредельных углеводородов, в частности диеновых (с сопряженными связями), и ненасыщенных боковых цепей ароматических углеводородов (типа стирола). Олефиновые углеводороды в большинстве случаев не влияют на окислительную стабильность крекинг-бензина при получении из указанных дистиллятов автомобильного бензина эти углеводороды, обладающие относительно высокими антидетонационными свойствами, желательно сохранять в продукте. [c.195]

    Углеграфитовые материалы и изделия за пшают важное место, поскольку они обладают высокими теплопроводными свойствами, инертностью к действию большинства агрессивных сред, малой чувствительностью к резким изменениям температур, способностью ис смачиваться расплавленными металлами и другими свойствами. Кроме того, эти материалы легко обрабатываются обычными режущими инструментами и для создания габаритной поверхности нужного качества требуется меньше трудовых затрат. Существенный недостаток изделий из углеграфитовых материалов — высокая пористость (до 30% и более), обусловливающая малую герметичность конструкций, устраняется дополнительной обработкой их внутренней поверхности различными реагентами (углеводородными газами и парами, фурановыми соединениями, металлами и др.) или применением для этой цели специальной технологии (получение целлюлозного , стекловидного , волокнистого углерода). [c.44]

    Выбор абсорбента зависит от свойств абсорбируемого газа. Углеводородные газы наилучшим образом извлекаются близкими им по строению и молекулярной массе жидкими углеводородами легкого бензина. Поскольку легкий абсорбент обладает высокой упругостью паров, он в значительной степени увлекается уходящим из абсорбера газом. СОбычно на абсорбционных установках применяют двухступенчатую абсорбцию основным абсорбентом служит бензиновая фракция, а затем выходящий из абсорбера газ промывается жидкостью тяжелого фракционного состава, например керосино-газойлевой фракцией, для извлечения из газа унесенного бензина. > [c.288]

    В настоящем пособии рассмотрены современные технологии комплексной переработки жидких и газообразных природных энергоносителей, описаны технологические схемы, их аппаратурное оформление приведены типичные материальные балансы, свойства получаемых продутстов и области их применения. Описана технология подготовки и использования заводских углеводородных газов даны поточные схемы переработки нефти с получением топливных компонентов и сырья для нефтехимического синтеза. [c.2]

    Таким образом, весь путь эволюционного перехода от нефти и углеводородных газов к углероду как к целевому продукту можно разделить на два участка - неуправляемой и управляемой карбонизации. Очевидно, условия и особенности развития сложных многокомпонентных систем на неуправляемом участке цепи химико-технологических процессов (ХТП), с помощью которых осуществляется эволюционный переход, оказывают существенное влияние на качество и условия формирования нефтяного углерода на управляемом участке перехода. В опосредованной форме это влияние проявляется через качество сырья, входящего в управляемый участок цепи ХТП и определяющего его состав, структуру и условия функционирования. Исторически сложилось так, что технология промышленного производства нефтяного углерода основывается на принципе приведения его в соответствие со сложившимися составом и структурой предприятий нефтехимпереработки и прежде всего с неуправляемой, с точки зрения карбонизации,частью цепи ХТП как поставщика нефтеуглеродного сырья. Хотя в принципе эволюционный переход от нефти и газа к углероду может быть реализован в полностью управляемой,с точки зрения формирования углерода заданного качества, цепи ХТП действие отмеченного выше принципа, очевидно, неустранимо и будет иметь место в течение весьма длительного периода. Поэтому важно более активно и полно использовать потенциал процессов "неуправляемого" участка эволюционного пути в аспекте повышения эффективности и интенсивности процессов формирования нефтяного углерода с заданным составом, структурой и свойствами. Существенным становится увеличение выхода нефтяного углерода на стадии его непосредственного пол чения как конечного продукта, Всё это требует накопления, анализа и обобщения данных по составу, структуре, дисперсности, свойствам, условиям и особенностям технологии формирования сложных многокомпонентных систем на всём пути эволюционного перехода от нефти и газа к углероду. В этом аспекте особо важны результаты исследования процессов раздельной и совместной карбонизации различных видов нефтеуглеродного сырья с использованием различ- [c.7]

    Не менее важной задачей технического анализа является производственно-технологическая оценка исходного сырья сырой нефти, дистиллятных и остаточных нефтяных продуктов, природного, попутного и промышленных углеводородных газов. Производственнотехнологическая оценка проводится главным образом по физикохимическим показателям, характеризующим состав и свойства сырья. [c.9]

    Теплотой сгорания (теплотворной способностью) газа называется количество тепла в килокалориях, которое выделяется при полном сгорании 1 газа. Теплота сгорания является одним из главных свойств горючих газовых смесей и зависит от их состава. По данным, приведенным в табл. 6, легко заметить, что теплота сгорания углеводородов растет с увеличением их молекулярного веса и что при сгорании одного объема водорода или окиси углерода выделяется значительно меньше тепла, чем при сгорании углеводородных газов. Поэтому нопутные нефтяные газы й газы крекинга имеют более высокую калорийность в сравнении с газами, полученными при термическом разложении сланцев, в составе которых имеется большой процент водорода и окиси углерода. Природный газ, состоящий в основном из метана, выделяет в среднем при сгорании 8400 ккал1м (4,1868.103 дж/м ). [c.64]

    Физико-химические свойства индивидуальных углеводородов (рекомендуемые аначеиня), под ред. проф. В. М. Татевского, Гостоптехиздат, 1960, 2 М. И. Дементьева, Лнализ углеводородных газов, Гостоптехиздат, 1959. [c.384]

    Перекачка нефти в газонасыщенном состоянии с точки зрения техники безопасности имеет много общего с транспортом сжиженных газов. Это обусловено тем, что, попадая в атмосферные условия, нефть разгазируется. Выделяющийся при этом углеводородный газ обладает токсичными и взрывоопасными свойствами. [c.147]


Смотреть страницы где упоминается термин Углеводородные газы и их свойства: [c.58]    [c.220]    [c.122]    [c.60]    [c.9]   
Смотреть главы в:

Анализ газов -> Углеводородные газы и их свойства




ПОИСК





Смотрите так же термины и статьи:

Свойства газов

Углеводородный тип газов



© 2025 chem21.info Реклама на сайте