Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конверсия совместная

    Если все образующиеся в установках с коксованием в псевдоожиженном слое промежуточные дистилляты в дальнейшем направляются на переработку в ЗПГ, например на гидрогазификацию, то потребуется дополнительно водород, количество которого значительно превышает количество водорода, требуемого для десульфурации продуктов после низкотемпературной конверсии. Этот водород может быть получен из циркулирующего рабочего газа реактора, очищенного газа или посредством частичного окисления тяжелых углеводородов. Таким образом, в данной упрощенной технологической схеме объединяются в одну стадию переработка в ЗПГ сырой нефти совместно с коксом и промежуточными погонами, получаемыми в установках с коксованием в псевдоожиженном слое. Однако в этом случае требуются дополнительные расходы водорода, более сложное и громоздкое газифицирующее оборудование, значительно превышающее по массе оборудование, сэкономленное за счет исключения установки для газификации кокса. [c.147]


    Оксокарбонат висмута может быть синтезирован непосредственным осаждением В1 при pH > 8 добавлением висмутсодержащих азотнокислых или солянокислых растворов к растворам карбонатов натрия или аммония. Например, добавлением раствора азотнокислого висмута (210 г/л В1, 35 г/л свободной НЫОз) в 2,5 М раствор карбоната аммония при pH раствора, равном 9, температуре 25 2 °С и объемном соотно-щении растворов соответственно 1 5. Однако совместно с висмутом осаждаются и основные примесные металлы (свинец, серебро, железо, цинк и др.), что не позволяет получать продукт высокой чистоты. Вследствие этого для получения оксокарбоната высокой чистоты в качестве исходного сырья требуется использовать предварительно очищенный металлический висмут или его оксид. Эффективная очистка висмута от примесных металлов может быть осуществлена на стадии его осаждения в виде оксогидроксонитрата [55]. Конверсия оксогидроксонитрата висмута в оксокарбонат при его обработке растворами карбонатов натрия или аммония позволяет получать продукт высокой чистоты [ 173]. [c.167]

    В реакторе со стационарным кипящим слоем (СКС) газ проходит снизу вверх с линейными скоростями 10—60 см/с, вычисленными для пустого реактора в условиях реакции синтеза. Слой катализатора расширен, но из реактора не уносится, а остается в нижней половине реактора, как показано на рис. 4. На установках Сасол в течение многих лет работали пилотные реакторы СКС с внутренним диаметром 5 см. Несмотря на более высокие отношения количества газа к количеству катализатора, конверсия в этих реакторах выше, чем в промышленных реакторах Синтол . Крупный опытный реактор СКС, работавший в США (Браунсвилл, шт. Техас) в начале 50-х гг., был сначала признан непригодным для использования из-за низкой конверсии, что связывали с неудовлетворительным распределением катализатора в кипящем слое [10]. Однако, считая такие реакторы перспективными, специалисты фирмы Сасол исследовали в больших плексигласовых моделях характеристики кипящего слоя своего тяжелого железного катализатора. Совместно с компанией Баджер были разработаны эффективные насадки для распределения газа. Также было найдено [11], что распределение катализатора в потоке газа существенно улучшается при добавлении порошка древесного угля. Впоследствии был разработан опытный образец реактора высокого давления, пуск которого намечался на 1983 г. [c.169]

    Минимальный расход пара в процессе паровой конверсии предельных нефтезаводских газов и бензинов, ниже которого возможно образование и осаждение углерода, определяют, решая совместно последнее уравнение с уравнениями (7) и (8). Тогда получим  [c.71]


    Решая совместно уравнение равновесия реакции конверсии СО с водяным паром и теплового баланса, находим Р и б. [c.103]

    На измельченный уголь наносят катализатор 0,2% Мо и 1,0% Ре(П1). Такое сочетание позволяет достичь степени конверсии органической массы угля до 83%. Максимальная активность катализатора обеспечивается при его нанесении из раствора на высушенный уголь. Эффективен также совместный вибропомол угля и солей катализатора, так как при этом происходит раскрытие микропор структуры органической массы угля и обеспечивается полное и равномерное нанесение катализатора на поверхность угля. [c.83]

    На основе такого подхода мы разработали новый термически стойкий и механически прочный катализатор конверсии природного газа марки КСН [20, 27, 52]. Высокие механические показатели данного катализатора были достигнуты в результате строго дозированного использования некоторых приемов. К ним относятся повышение температуры прокалки глиноземного носителя до температуры почти полного его спекания, введение ограниченного количества спекающих добавок и применение достаточно большого количества выгорающей добавки оптимальной крупности. Положительное влияние каждого из этих приемов в отдельности было известно. Неожиданным оказался тот значительный эффект, который мы получили при совместном и строго дозированном действии перечисленных факторов. Так был найден общий путь создания катализаторов, обладающих, в частности, исключительно высокой термостойкостью. В качестве активного компонента катализатора использовали никель. [c.118]

    Проведен анализ энергозатрат [61] для достижения полной конверсии реагента в системе для случаев раздельного проведения процессов синтеза и разделения, совместной реализации указанных процессов в рамках одного реакционно - ректификационного аппарата для обратимой реакции. [c.109]

    В свете этих решений перед азотной промышленностью, вырабатывающей эффективные виды удобрений, поставлены весьма важные и серьезные задачи. Для их выполнения необходимо строительство новых предприятий, расширение и реконструкция на основе прогрессивной технологии действующих заводов, оснащение их высокопроизводительным мощным оборудованием. В связи с этим в производстве аммиака разрабатываются и внедряются новые методы конверсии природного газа с применением повышенного давления создаются более активные катализаторы, работающие при сравнительно низких температурах и обеспечивающие более высокую степень превращения исходных веществ в получаемые продукты применяются более эффективные абсорбенты для удаления из газов двуокиси углерода глубоко используется тепло химических процессов (включая синтез аммиака) для получения водяного пара высокого давления (до 140 ат), перегреваемого до высоких температур (570 °С) в крупных агрегатах синтеза аммиака мощностью 1000—1500 т сутки и более. Энергию получаемого таким путем водяного пара высоких параметров можно использовать в паровых турбинах для привода основных машин аммиачного производства, в частности турбокомпрессоров высокого давления для сжатия азото-водородной смеси до давления процесса синтеза аммиака, воздушных турбокомпрессоров, турбокомпрессоров аммиачно-холодильной установки, центробежных циркуляционный компрессоров совместно с турбокомпрессорами высокого давления. Энергия пара рекуперируется также в турбогенераторе для выработки электроэнергии, потребляемой на приводе насосов. В пу)овых турбинах высокое давление части полученного пара понижается до давления, близкого к давлению процессов конверсии метана и окиси углерода, что позволяет использовать в этих процессах собственный технологический пар. [c.10]

    Известен инициирующий эффект добавки этана к более тяжелым углеводородам. При этом распад последних ускоряется, а распад этана — замедляется [124, 125]. В табл. 7 приведены результаты расчетов раздельного и совместного пиролиза -гексана и этана при одинаковых исходных мольных концентрациях углеводородов. Действительно, для этана время достижения заданной конверсии в смеси увеличилось с 0,08 до 0,316 с, а для гексана сократилось с 0,413 с до той же величины. [c.39]

    В настоящее время с целью улучшения технико-экономических показателей процесса на пиролиз совместно с этаном возвращаются и другие потоки (рецикл), содержащие также олефины [130], в частности пропилен. На установках с абсорбционным газоразделением этан-рецикл всегда содержит некоторое количество пропилена. Исследования пиролиза такого сырья, показали, что содержание пропилена в пирогазе практически не зависит от исходной концентрации в сырье, и в смеси с этаном он быстро конвертируется. На рис. 5 показано изменение степени превращения пропилена, содержание которого в исходном сырье составляло 7,2—9,8%, от степени превращения этана. При 50%-й конверсии этана выход пропилена составляет 1,5—2,0%, т. е. соответствует величине, кото- [c.43]


    Успехи химизации народного хозяйства нашей страны неразрывно связаны с усилиями других социалистических стран. Комплексная программа экономической интеграции стран СЭВ, реализуемая в настоящее время, основана на сотрудничестве социалистических стран и. в частности, в деле химизации сельского хозяйства, в производстве новых типов полимеров, каучуков, химических волокон. Постоянная комиссия СЭВ по химии дала предложения по специализации многих химических производств. СССР и ГДР создали совместно высокоавтоматизированный процесс производства полиэтилена высокого давления, который позволил увеличить вдвое производительность труда и снизить затраты энергии и сырья. По Олефиновой программе в СССР и в Венгрии уже сейчас производится свыше 250 тыс. т этилена и 130 тыс. т пропилена. Первый по газопроводу, а второй в цистернах поступают из Венгрии на химический комбинат в г. Калуше (СССР), а целевой продукт — поливинилхлорид — транспортируется в обратном направлении. Венгерские и советские специалисты разработали и внедр или в производство метод одноступенчатого гидрирования фенола для получения капролактама. Совместные усилия советских и болгарских химиков привели к созданию долговечных низкотемпературных катализаторов конверсии оксида углерода (И). Советские и чехословацкие специалисты создали высокоэффективные промышленные электролизеры с ртутным катодом для получения хлора и гидроксида натрия. [c.17]

    Октафтортолуол получают совместным пиролизом гексафторбензола с тетрафторэтиленом в трубчатом реакторе из нержавеющей или углеродистых сталей (выход 90—96% конверсия 62— 65%) [261]. Другие методы получения см. [16, с. 143]. [c.141]

    Изучалось влияние разбавления метанольной шихты водой [96]. Зависимость селективности образования формальдегида от состава шихты имеет экстремальный характер, причем максимум отвечает концентрации метанола 80—90% (рис. 17). Конверсия метанола по мере роста содержания метанола монотонно падает. Совместное влияние этих факторов приводит к тому, что выход формальдегида на пропущенный метанол до содержания последнего 80—85% практически не меняется, а при меньшем содержании воды снижается. Использование разбавленных растворов метанола приводит к повышению конверсии спирта и уменьшению концентрации формальдегида в формалине. Поэтому на тех производствах, где существуют жесткие требования по содержанию метанола в продуктах реакции, но не требуется концентрированный формалин, целесообразно применять разбавленные [c.44]

    Конверсия. Процесс гидрокрекинга повышает качество продуктов (рис. 12,95) за счет совместного воздействия парциального давления водорода и уровня конверсии в присутствии катализатора. Дистиллятные топлива очень высокого качества, включая реактивное [c.854]

    Двумя хорошо известными вариантами термического риформипг-процесса являются полиформинг-процесс [4, 21] и процесс полиформного крекинга [4] в этих процессах имеет место совместная конверсия лигроина и углеводородных газов. В первом процессе лигроин растворяет углеводороды Сз и С4, образовавшиеся в процессе риформинга, и затем смесь подается в змеевик трубчатой печи. Во втором лигроин и поток рециркулирующего газа нагреваются в двух отдельных змеевиках и только затем соединяются в третьем для окончательной конверсии. В том случае, если применяются аналогичные режимы и сырье, оба процесса дают примерно равные выходы бензинов с подобными свойствами. [c.46]

    Уравиоине (7) представляет собой уравнение разложения метана и большом интервале температур, давлений и различном составе сырья / , рассчитанное по уравнепию (7), является средней скоростью разложения при различных конверсиях. Таким образом, уравнение (7) совместно с уравнением (3) дают возможность опродолить глубину разложения метана. Необходимо также определять состав продуктов разложения, т. е. конверсию до ацетилена и этилена (особенно до ацетилена). [c.68]

    Катализатор получают совместными осаждением 10—30 мас.% никеля с окисью алюминия. Катализатор промоти-рован цинком и хромом, добавленными в количестве 5— 25 мас.%. Может содержать также дополнительные промотируюш,ие добавки Ва, Се, 5г, С5. К Углеводороды Сг—С]о Конверсию углеводородов с водяным паром проводят при температуре 316—496° С Метансодержащий газ [c.128]

    Топливный газ получают совместной конверсией сухого газа и углеводородного сырья с водяным паром в присутствии Ы1-и-катализатора при температуре 350—700° С и давлении 5—20 ат. Условия реакции и количество сухого газа подбирают такими, чтобы реакция была экзотермической или термонейтральной. Сухой газ получают конверсией беи-зино-легронновой фракции (Се—С,) с водяным паром в присутствии Ы1-и-катализа-тора при высоких температурах. Он состоит из водорода и окиси углерода [c.136]

    Поскольку газ после второй ступени сбрасывают в атмосферу, в реакторе 5 подбирают режим таким, чтобы получился максимальный выход оксида этилена, т. е. ведут процесс при значительной степени конверсии оставшегося этилена и при несколько пониженной селективности. Газ второй ступени, как и после первой, охлаждают в теплообменнике 4 и направляют в абсорбер 6 второй ступени, где поглощается оксид этилена. Газ после этого абсорбера сбрасывают в атмосферу, а растворы оксида этилена (и СО2) из абсорберов 3 и 6 перерабатывают совместно, выделяя чистый продукт. Общий выход а-оксида 60% по этилену при средней селек-тивнюми 65% ц суммарной степени конверсии этилена 90%. [c.435]

    Решая совместно систему уравнений методом последовательных приближений, используя вычислительную среду МаАСАО, можно определить распределение температур в твердой и газовой фазе, а также степень конверсии. Некоторые результаты вычислений приведены на рисунке. [c.34]

    В работе /У рассмотрен процесс конверсии в кипящем слое,разрабатываемый совместно Институтом нафтешшического синтеза АН СССР и Институтом газа АН УССР. Главной особенностью зтого процесса является подвод тепла в реакционную зону сепарирующимся твердым теплоносителем, нагреваемым в отдельном аппарате. Благодаря непосредственному контакту между теплоносителем и кипящим слоем катализатора резко возрастает интенсивность теплоподвода в зоне реакции и соответственно этому - интенсивность конверсии. Так как процесс осуществляется в аппаратах шахтного типа, то не нужны дорогостоящие и дефицитные жаропрочные трубы. [c.114]

    Катализатор КСН-2 разработан Институтом Газа АН УССР совместно с Невиномысским и Северодонецким химкомбинатами. Он применяется в процессах конверсии природного газа иа заводах синтеза аммиака. Катализатор характеризуется высокой термостойкостью [I]. В длительных испытаниях на пилотных установках катализатор КСН-2 показал достаточно высокую активность и стабильность работы в процессе высокотемпературной паровой конверсии нефтезавод-ских газов [2]. Целью настоящей работы явилась проверка полученных показателей в опытно-промшленном масштабе. [c.20]

    Программы должны быть (внешне) настолько гибкими и общими, насколько это разумно. Специальные случаи должны определяться самой программой и надлежащим образом обрабатываться, чтобы потребителю не пришлось распознавать эти специальные случаи, Имеются тем не менее ограничения на степень гибкости и общности программы, определяемые не столько существенными трудностями, сколько соображениями об эффективности затрат и легкости использования, — эти ограничения не следует нарушать. Например, тогда как имеется преимущество в совместном рассмотрении в одной программе реакторов высоко- и низкотемпературной конверсии СО вследствие множества общих данных и частого практического использования их в комбинации, явно нецелесообразно комбинировать в одном блоке проектный расчет реакторов синтеза аммиака и кон-верспи СО — это было бы просто расточительством памяти и времени центрального процессора. [c.178]

    Значительный интерес представляют гидрогенизационные методы очистки, сочетающие гидрогенолиз сернистых и крекинг насыщенных углеводородов. Гидрокрекинг в широком диапазоне температур и давлений имеет более высокую энергию активации, чем гидрирование ароматических углеводородов (73,2 и 60,7 кДж/моль соответственно [60]), поэтому в таких условиях невозможна достаточно полная конверсия примесей без одновременного гидрирования ароматических углеводородов. Кинетика совместных превращений тиофена и насыщенных углеводородов изучалась на алю-момолибденовом катализаторе при давлениях 0,5—1,5 МПа [61]. Установлено, что гидрокрекинг насыщенных углеводородов протекает в более жестких условиях по сравнению с гидрогенолизом тиофена. При малом содержании нафтенов и парафинов в бензоле их заметная конверсия (пе менее 50% от первоначального содержания) начинается при 480—510°С и развивается с повышением температуры и снижением объемной скорости. В соответствии с более высокой энергией активации наиболее стоек к разложению н-гептан. [c.229]

    В 1959 году по проекту ГИАП введен в строй цех по производству азотной кислоты комбинированным методом с использованием тонкой очистки аммиачновоздушной смеси, обеспечивающей высокую конверсию аммиака и сохранение катализатора. В 1968 году созданы установки по производству разбавленной азотной кислоты под высоким давлением мощностью 120 тыс. тонн в год. Начиная с 1976 года, основным типом установок в отечественной азотнокислотной промышленности становятся системы с замкнутым энерготехнологическим циклом, работающие по комбинированной схеме мощностью 380 тыс. тонн в год (АК-72). Аналогичные системы используются в настоящее время и за рубежом. К ним относятся, например, агрегаты фирмы Гранд Паруасс (Франция) мощностью от 900 до 1250 т/сутки, работающие по комбинированной схеме, и разработанные совместно ГИАП и Гранд Паруасс аналогичные агрегаты мощностью до 2000 т/сутки. [c.212]

    Поэтому рассмотрим их совместно. На схеме рис.72 представлен аммиачный вариант схемы. С давлением 0,17-0,19 МПа газ поступает в ниж-нвю часть сатурационной башни 1 для насыщения парами воды. Если вырабатывается газ для синтеза метанола, то на входе в башню подается определенное количество двуокиси углерода, рассчитанное, исходя из заданных составов исходного и конвертированного газов с учетом шраметров процесса конверсии. Обычно отношение со к природ- [c.240]

    Подавать рециркулят в зону реакции можно совместно с сырьем или отдельно. В последнем случае используется самостоятельный лифт-реактор или рециркулят подается в псевдоожиженный слой катализатора. Предложено также [94, 95] крекинг рециркулята проводить в отдельном реакторе, иыеющем самостоятельную отстойную зону, с последующей раздельной ректификацией продуктов. При работе установок крекинга с высокой конверсией сырья количество рециркулята газойлевых фракций не превышает 15—20% (масс.), и его целесообразно крекировать в смеси с сырьем, так как при раздельном крекинге практически не улучшается селективность процесса [97]. В работе [96] рекомендуется отказаться от рециркулята, включая даже возврат катализаторного шлама, но крекинг предлагается проводить на высокоактивных и износостойких цеолитсодержащих катализаторах с применением усовершенствованных систем пылеулавливания. [c.139]

    Добавки молекулярного иода в количестве до 7 % (или других радикалобразующих веществ, например, кислорода, окиси этилена, азотной кислоты) стимулируют лишь крекинг бутана. Однако совместное введение иода и кислорода в реакционную систему приводит к увеличению выхода продуктов дегидрирования, хотя и мало влияет на конверсию углеводорода. [c.177]

    В результате исследований, проведенных совместно с различными министерства.ми, были разработаны и уже внедряются в промышленность нестационарные методы окисления диоксида се1)ы в производстве серной кислоты, обезвреживания отходящих газов промышленных производств от оксида углерода и различных органических веществ, получения высокопотенциальной теплоты из слабоконцентрированных топлив и газов. Ведутся работы по синтезу метанола, аммиака, конверсии природного газа и оксида углерода, метанироианию, получению серы из сероводорода и другим процессам. Особенно интенсивно протекает внедрение нестационарных методов окисления на предприятиях цветной металлургии, где [c.260]

    Результаты эксперимента указывают на сложный характер взаимовлияния адсорбции оксидов углерода на их конверсию в углеводороды при совместной гидрогенизации, который связан как с концентрацией водорода, адсорбированного на поверхности катализатора, так и с состоянием поверхности катализатора, а также с температурой процесса. В зависимосги от эгих факторов процесс может идти JП-tбo непосредственно через сгадию образования активного углерода, либо через стадию образования монооксида углерода, либо через стадию диспронорционирования СО, что может приводить к увеличению концентрации диоксида углерода в реакционной смеси. Наиболее 01ггимальным является проведение процесса при недостатке водорода, в области температур 350 С и после нрдварительной высокотемпературной обработки катализатора в инертно.м газе. [c.22]

    Параметр е совместно с конверсией р является характеристикой системы н определяет волпчппы т, л, а. Онп находятся с помощью уравнений (111.79), (111.82), (111,10), которые запишутся в виде [c.240]

    В конце 1970-х годов начались совместные работы фирмы Ashland Oil и UOP с целью разработки системы каталитического крекинга для эффективной конверсии остаточного материала. Обе компании признавали, что определенное число новых разработок процессов потребуется для того, чтобы решить добавочные проблемы увеличения производства кокса и загрязнения металлами катализатора. Эти усилия привели к разработке основных принципов и технологического оборудования для процесса R . Принципы процесса быпи впервые подтверждены на крупномасштабной (1,3 м /ч или 200 баррелей/сутки) демонстрационной установке. [c.432]

    На основании изучения диффузионных процессов ранее была предложена оптимальная крупность гранул катализатора конверсии окиси углерода. В настоящее время кафедрой совместно с ХПИ и Северодс-нецким филиалом ГИАП на Северодонецком химическом комбинате испытывается реактор с рекомендованной крупностью гранул катализатора. [c.127]

    Для Ф. р. наиб, перспективны динамич. подходы, поскольку они позволяют учитывать специфику конкретных процессов и в ряде случаев совместно рассматривать хим. превращение и конкурирующие с ним процессы деградации энергии возбуждения. Р-ции возбужденных молжул с этой точки зрения разделяют на разрешенные и запрещенные (по мультиплетности, орбитальной симметрии и др.). Напр., при нарушении орбитальной симметрии на пути р-ции возникает значит, потенциальный барьер, высота к-рого непосредственно не связана с энергетикой р-ции. Скорость таких Ф.р. может сильно изменяться даже при слабых изменениях структуры и симметрии молекул реагентов. Аналогично, для Ф. р., связанных с изменением льтиплетности реагирующих частиц, весьма существенны факторы, влияющие на спиновые взаимод. (см. Спин-орбитальное взаимодействие, Спин-спиновое взаимодействие)-, эти факторы определяют вероятность интеркомбинационной конверсии, к ним относится, в частности, наличие в реагирующих молекулах или в среде тяжелых атомов ПЕфамагн. частиц, а также внеш. магн. поля. [c.180]

    Такое оформление процесса позволяет снизить расход технического водорода до величины, близкой к теорет,ической Кроме того, отказ от циркуляционных компрессоров резко сокращает расход электроэнергии Схема без циркуляции газа целесообразна для крупных агрегатов гидрирования бензола, размещаемых совместно с крупными агрегатами синтеза аммиака, где азотоводородную смесь получают по способу конверсии метана и окиси углерода с водяным паром и воздухом, т. е. на заводах, располагающих 75%-ным водородом [c.32]

    Расчеты [236, 237] показывают, что Флюор-процесс экономичен в том случае, когда парциальное давление СОа исходном газе превышает 3,92 10 —6,86 10 Па (4—7 кгс/см ) нри содержании СОа в очищенном газе 1—3%. При производстве аммиака после промывки газа пропиленкарбонатом необходима последуюш ая тонкая очистка раствором МЭА. Пользуясь этим способом, можно одновременно очищать газ от сероводорода, сероуглерода, меркаптанов и сероокиси углерода. Процесс пригоден для очистки газа, полученного высокотемпературной конверсией углеводородов под давлением, в котором содержится обычно до 30% двуокиси углерода. Поскольку при высокотемпературной конверсии не требуется предварительная очистка от серы, ее можно удалять вместе с двуокисью углерода пропиленкарбонатом. При очистке от сероводорода, а также при совместной очистке от СОа и На8 Флюор-процесс экономичен и при парциальных давлениях сероводорода более низких, чем указанное выше давление двуокиси углерода. [c.265]

    Скорость реакции взаимодействия метана с водяным паром или двуокисью углерода в отсутствие катализатора незначительна. Энергия активации реакции (I) в гомогенных условиях и при температуре 700—1050 С равна 65000 ккал1моль [1, стр. 88]. Кроме того, нагревание метана совместно с окислителями может привести к образованию углерода. С целью снижения энергии активации и предотвращения отложения углерода конверсию метана с водяным паром в промышленности проводят на катализаторе. [c.63]

    Совместно с сотрудниками ВНИИНП мы предложили использовать способ низкотемпературной паровой конверсии гомологов метана для стабилизации состава нефтезаводских газов, направляемых на переработку в качестве сырья для производства водорода. Снижение содержания гомологов метана в таком сырье должно ис- [c.124]

    Исходя из механизма окисления циклогексана, а также пре вращений продуктов реакции в условиях процесса, можно ожи дать, что высокие выходы циклогексаиола и циклогексанона мс гут быть получены, вероятно, только при невысоких степенях пре вращения исходного сырья. Практически конверсию циклогексан выдерживают в пределах 5—15% [62—64]. Основным побочны продуктом, образующимся в результате дальнейшего окислени циклогексаиола и циклогексанона, является адипиновая кислот Выход ее зависит от условий ведения процесса (температурь времени контакта, катализатора). Снижение выхода адипиново кислоты достигается повышением температуры окисления с однс временным уменьшением времени реакции. При 180 °С и времен контакта 30—40 мин, как показано на опытно-промышленно установке [65, 66], основными продуктами окисления циклогексг на являются циклогексанол и циклогексанон. В этих условия процесс может быть осуществлен в отсутствие катализатора. О нако полностью предотвратить образование адипиновой кислот на стадии окисления циклогексана не удается вследствие высоко реакционной способности циклогексаиола и циклогексанона. Пр организации совместного производства фенола и адипиново [c.273]

    Синергизм комбинированной установки каталитического крекинга (F ) с предварительной подготовкой сырья. При замене секции подготовки сырья F методом гидроочистки на гидрокрекинг с частичной конверсией сырья плотность сырья F уменьшается. Таким образом, совместное воздействие более высокого давления и более высокой конверсии при проведении процесса гидрокрекинга с частичной конверсией сырья позволяет получить сырье F более высокого качества при практически одинаковом уровне обессеривания сырья, как при процессе традиционной гидроочистки. Синергизм от гидроподготовки сырья каталитического крекинга подтверждается улучшением технико-экономических показателей НПЗ и увеличением выработки высококачественных моторных топлив (табл. 12.92, 12.93). [c.859]


Смотреть страницы где упоминается термин Конверсия совместная: [c.21]    [c.178]    [c.169]    [c.115]    [c.169]    [c.9]    [c.29]    [c.115]   
Гены (1987) -- [ c.453 ]




ПОИСК







© 2025 chem21.info Реклама на сайте