Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись жидком

    Крезол. .... 20,8 Серы двуокись (жидк,)  [c.295]

    Серы двуокись (жидк.) [c.230]

    Серы двуокись (жидк.)) 0,43 [c.295]

    Реакцию сульфохлорирования жидких углеводородов проводят, пропуская хлор и двуокись серы при непрерывном перемешивании в жидкие углеводороды при ультрафиолетовом облучении. [c.398]

    Кроме того, необходимо, чтобы применяемый растворитель неограниченно смешивался с одним веществом, в то время как второе вещество было бы в нем практически нерастворимо. В данном случае жидкая двуокись серы отвечает этим требованиям. [c.405]


    Жидкая двуокись серы является растворителем, имеющим низкую температуру кипения (—10°). Она смешивается с парафиновыми сульфохлоридами в любом соотношении и вместе с тем совершенно неспособна растворять высокомолекулярные парафиновые углеводороды. Преимуществом является также и то, что непрореагировавший углеводород, отделенный при экстрагировании, может быть вновь введен в процесс сульфохлорирования без удаления двуокиси серы, так как последняя сама является участником реакции сульфохлорирования. [c.405]

    Из этого вытекает требование, чтобы экстрагирование велось с возможно большим количеством двуокиси серы по сравнению с сульфохлоридом и чтобы образовывался разбавленный раствор сульфохлорида в двуокиси серы. На практике лучше всего работать при объемном соотношении 50%-ный сульфохлорид жидкая двуокись серы, равном примерно 1 3. Так как удельный вес 50%-ного сульфохлорида в среднем составляет 0,880, а удельный вес жидкой двуокиси серы 1,462, то приведенное объемное соотношение соответствует весовому соотношению примерно 1 5. С другой стороны, к концу процесса экстрагирования раствор должен иметь возможно более низкую температуру, чтобы как можно большее количество непрореагировавшего углеводорода осталось нерастворенным. [c.405]

    В этом разделе мы не будем касаться вопросов первичной миграции (эмиграции), т. е. процессов перемещения УВ внутри нефтегазоматеринской толщи. Формирование состава нефти происходит, по мнению ряда исследователей, в основном в коллекторской толще, в которой концентрируется значительная подвижная масса жидких и газообразных УВ (в различном сочетании), смолисто-асфальтеновых компонентов, неуглеводородных соединений и элементов, таких как азот, сероводород, двуокись углерода, металлопорфириновые комплексы и т. д. [c.112]

    Многие реакции протекают между веществами, первоначально находящимися в различных фазах. Такие реакции обычно сопровождаются другими, чисто физическими промежуточными процессами, которые влияют на суммарную скорость реакции. Рассмотрим взаимодействие смеси двуокиси углерода и воздуха с водным раствором извести. Прежде чем эти вещества вступят в реакцию, двуокись углерода должна продиффундировать по крайней мере к поверхности жидкой фазы. Механизм данной реакции можно представить следующими уравнениями  [c.38]

    Газ с установки неполного окисления смешивают с водяным паром и подают на установку конверсии окиси углерода, в результате которой образуется двуокись углерода и дополнительное-количество водорода. Двуокись углерода удаляют из газа промывкой моноэтаноламином. Оставшийся водород очищают от примесей промывкой каустической содой и жидким азотом. К очищенному водороду добавляют азот в таком количестве, чтобы их соотношение было равно 3 1. Эта смесь поступает в аммиачный конвертор, работающий под давлением 365 ат. Газы, выходящие из конвертора, поступают на конденсацию аммиака, для чего их [c.159]


    Для охлаждения деталей используется сухой лед (двуокись углерода), имеющий температуру —78 °С, или жидкий азот, имеющий температуру —196 °С. [c.109]

    Для изучения влияния указанных двух факторов проведены опыты [111] по фильтрованию при постоянной разности давлений с использованием в качестве жидкой фазы воды, глицерина, керосина и различных масел, причем вязкость жидкой фазы изменялась в пределах (1 — 1250) 10 з Н-с-м (несколько опытов проведено с медно-аммиачными прядильными растворами, имеющими вязкость до 11650-10 3 Н-с-м и содержащими волокна целлюлозы и частицы гидроокиси меди) в качестве твердой фазы применяли каолин, диатомит, двуокись титана, стекло, сажу, активированный уголь с размером частиц от 0,5 до 50 мкм. Концентрация суспензии в большинстве опытов составляла 1—5 г-л . В качестве фильтровальной перегородки использовали ткань из хлорина (перхлорвинилового волокна), которую помещали на горизонтальную опорную перегородку фильтра. На основании опытных данных строили кривые в координатах q—x/q и т—xjq. По [c.105]

    Впервые смешанный растворитель ЗОг+бензол был применен для рафинирования смазочных масел вместо серной кислоты. Этот способ носит название процесса Эделеану [57—611. Прототипом для переработки масел этим методом послужила экстракция нефти, примененная еще в 1911 г. Главным растворителем является жидкая двуокись серы количество добавляемого бензола колеблется в пределах 15—25% и тем выше, чем выше вязкость масла. Двуокись [c.395]

    Охлажденную и полностью сконденсировавшуюся двуокись углерода подают в трубопровод. На всем протяжении трубопровода углекислота сохраняется в жидком состоянии (линии 3, 5). Минимальное рабочее давление во всех без исключения точках трассы поддерживают больше, чем соответствующее значение упругости паров, т. е. для линейной части должно соблюдаться условие р>ру. п. [c.170]

    На рис. 4.27 приведена схема адсорбционно-каталитической установки. Газ из скважин после предварительной сепарации от капельной влаги, жидких углеводородов и механических примесей поступает в адсорбционный блок. В первом адсорбере на природном цеолите из сернистого газа адсорбируются пары воды, а на синтетическом цеолите сероводород (углеводороды) и частично двуокись углерода. При проскоке сероводорода за слой адсорбента подача газа авто- [c.134]

    Введение. Агрегатные состояния веществ. В большинстве случаев каждое вещество может, в зависимости от внешних условий (температуры и давления), находиться в газообразном, жидком и твердом состояниях, т. е. в том или ином агрегатном состоянии. Однако для некоторых веществ не все три агрегатных состояния достижимы. Так, карбонат кальция при легко доступных давлениях практически не удается получить ни в жидком, ни в газообразном состояниях, так как он разлагается при нагревании на окись кальция и двуокись углерода раньше, чем наступит его плавление или испарение, а окись кальция практически нелетуча. С другой стороны, возможны такие условия, при которых данное вещество может находиться одновременно в двух или даже в трех состояниях. Так, вода при 0,010°С и давлении мм рт. ст. находится в устойчивом равновесии в трех состояниях — льда, жидкой воды и водяного пара. [c.91]

    Процеос метанизации окиси и двуокиси углерода, термодинамика и кинетика реакций которого рассмотрены в гл. 5, — важная технологическая стадия в переработке жидких твердых вадов топлива в ЗПГ. Обычно принято считать, что на подготовительных стадиях процесса производства ЗПГ в ходе различных реакций газификации, которые были рассмотрены в предыдущих главах, одновременно с образованием метана идет образование целого ряда низкокалорийных газов. Так, в результате окислительного пиролиза и паровой конверсии образуются окислы углерода причем теплота сгорания их колеблется от нуля (чистая двуокись углерода) до 3021 ккал/м , или 12 650 кДж/м (окись углерода). При гидролизе в образующейся смеси газов, теплота сгорания которой также близка к 3000 ккал/м , или 12 тыс. кДж/адз, как правило, содержится некоторое количество остаточного водорода. [c.176]

    Ангидрид сернистый жидкий технИ ческий(двуокись серы) [c.144]

    Двуокись серы (жидк.). 1484 1434 1383 1327 1264 1193 1111 1010 [c.804]

    Двуокись серы (жидк.)..... [c.806]

    Двуокись серы (жидк.) 0,313 0,317 0,327 0,342 0,363 0,389 0,42 0,457 [c.808]

    Двуокись серы (жидк.) 0,193 0,182 0,171 0,16 0,15 0,139 0,128 0,117 [c.810]

    Освобождение высокоароматизированных концентратов от равнокипящих алифатических углеводородов и получение таким образом чистых индивидуальных углеводородов нринципиально осуществимо различными путями. Выделение ароматических углеводородов из ароматизированных жидкостей возможно, например, путем экстракции. Для этого применяют в большинстве случаев жидкую двуокись серы (сернистый ангидрид). Способ был предложен для этой цели в 1907 г. Эделеану и первоначально применялся для очистки керосина [7]. Экстрагируемый исходный материал смешивается с жидким сернистым ангидридом (рис. 49), который растворяет ароматические углеводороды и как тяжелый слой оседает вниз (экстракт). Вследствие растворяющего действия ароматических углеводородов вместе с ними переходит в экстракт и определенная часть неароматических составных частей. Для удаления их экстракт промывают высококипящей парафи-аистой фракцией, извлекающей эти неароматические углеводороды. Затем из экстракта удаляют сернистый ангидрид, который возвращается на уста- [c.106]


    При сжигании газа в нечи температура пламени поддерживается около 1350°. Тепло отводится с водяным паром. При этом уже идет образование элементарной серы. Для обеспечения полного превращения газ проходит через несколько конверторов, в которых в присутствии боксита как катализатора происходит дальнейшее превращеппе в элементарную серу. Горячие газы утилизируются для образования пара. Жидкая сера собирается. Выход может быть доведен до 95%. Не вошедший в реакцию сероводород сжигается в избытке воздуха в двуокись серы и через высокую трубу выбрасывается в атмосферу. [c.274]

    При пуске установки включают циркуляционный насос и ртутнокварцевые лампы, после чего подают хлор и двуокись серы. Двуокись серы ввсдится, как указывалось выше, в 10%-ном избытке по сравнению с хлором. Хлор поступает из цистерны под давлением 5—6 ат в жидком виде и. пройдя расходомер, поступает в испаритель, где дросселируется до 2,2 ат, и это давление поддерживается во всей системе. [c.401]

    С верха колонны по трубе /V рафинат поступает в конденсационный горшок Л. Этот горшок препятствует дросселированию давления газа в колонне и одновременно обеспечивает свободный выпуск рафината, который вместе с некоторым дополнительным количеством рафината из отстойника попадает в выпарной аппарат для рафината /2. Другой метод работы состоит в том, что рафинат из отстойника снова подвергают в колонне экстрагированию. Выпарной аппарат для рафината работает при тех же условиях что и выпарной аппарат для экстракта. Двуокись серы, отогнанная в обоих выпарных аппаратах, компримируется компрессором 4 до давления 2—3 ат и затем конденсируется в холодильнике 5. Жидкая двуокись серы поступает снова в мерник 6, на чем ее круговорот заканчивается. Потери двуокиси серы, обусловленные неполнотой обезгаживания выходящих рафината и экстракта, покрываются поступлениями из запасного бака 13. По всей иоло нне для экстр агкровтмя температурный перепад (составлл ет от +10° ДО —10°. Этот перепад создается независимыми друг от друга витками трубок (иа схеме не показано), идущими вокруг колонны, по которым циркулируют различные количества охлаждающего рассола с температурой —20°. В отстойнике и в холодильнике точно так же поддерживается температура —20°. Получаемый таким образом сульфохлорид является примерно 95%-ным. Это значит, что он содержит еще 5% углеводорода. Выход при экстрагировани и составляет примерно 75% от введенного чистого сульфохлорида. Рафинат снова сульфохлорируется и поступает затем снова на экстрагирование. [c.407]

    Серная кислота, олеум и хлорсульфоновая кислота обычно применяются в избытке, выполняя одновременно роль дешевых низковязких растворителей для образующ ихся сульфокислот (или сульфонилхлорида). Серный ангидрид может применяться непосредственно в виде жидкости (как она выпускается на рынок) или она может быть легко переведена в парообразное состояние (температура кипения 44,8°) и перед введением в сульфуратор возможно ее разбавление инертным газом. Жидкая двуокись серы — превосходный инертный растворитель при сульфировании бензола серным ангидридом [17, 42, б4] или хлорсульфоновой кислотой [86], а также она может быть реакционной средой при сульфировании додецилбензола 20%-ным олеумом [14]. При производстве сульфонил-хлоридов (с хлорсульфоновой кислотой) в промышленности растворители но применяются в лабораторной практике в некоторых случаях применяется хлороформ в качестве реакционной среды [54]. Серный ангидрид смешивается с жидкой двуокисью серы, а также с такими хлорированными органическими растворителями, как тетрахлорэтилен, четыреххлористый углерод и трихлорфторметан. Высокая реакционная способность серного ангидрида может быть смягчена введением его в комплексе с большим числом разнообразных веществ. Эти комплексы по своей реакционной способности располагаются в ряд в зависимости от природы исходного вещества, взятого для получения комплекса. [c.518]

    Совершенно новым направлением применения рассматриваемога процесса является получение водородсодержащего газа из бензина-при низких температурах. Понижение температуры до 260° С, снижение давления до близкого к атмосферному и уменьшение степени газификации жидкого сырья приводят к тому, что процесс низкотемпературной конверсии бензина оказывается ориентированным, в основном, на получение водорода. Побочно получающая-ся двуокись углерода может быть легко удалена обычными способами. Повышение температуры процесса приводит к увеличению содержания окиси углерода в газе конверсии бензина. При пониженных температурах этим способом можно получить газ, практически не содержащий окиси углерода (см. табл. 25). [c.41]

    Каталитический риформинг дает как экономическую, так и техническую возможность получать бензол, толуол, ксилолы и этилбензол из нефтяного сырья. Из реформата эти углеводороды извлекаются либо путем селективной экстракции (экстрагент-смеси воды с диэтиленгликолем или же жидкая двуокись серы), либо путем экстрактивной или азеотропной дистилляции, либо путем адсорбции [343—345]. В газойлях каталитического крекинга содержатся значительные количества нафталина и метилнафталинов, однако основным поставп] иком этих углеводородов пока по-прежнему остается коксохимическая промышленность. [c.588]

    Обращение с сухим льдом, сжиженными и сжатыми газами. Твердая двуокись углерода (сухой лед) имеет температуру порядка —81 °С, поэтому обращаться с ней необходимо осторожно, так как при небрежном обращении возможно обмораживание. Еще более осторожного обращения требуют сжиженные газы, например жидкий азот, жидкий воздух и пр. Такие газы хранят в сосудах Дьюара (рис. 10), а большие количества газа—в стальных баллонах. Нужно быть очень осторожным при обращении с баллонами, нaпoлнeнньLми сжатыми газами. [c.21]

    Окись и закись азота, как показали опыты, не вступают в реакцию с ненасыщенными углеводородами при 90° К и не увеличивают чувствительность к воспламенению смесей жидкий кислород — углеводороды. Однако если в смеси жидкого кислорода с углеводородами вводили озон (более 200 микродолей) и двуокись азота, то чувствительность к воспламенению возрастала более, чем при наличии одного озона. [c.26]

    Отмечено, что разделение на фильтрах суспензий с неньютоновской жидкой фазой исследовано недостаточно [168]. Дано математическое описание процесса разделения суспензии при допущениях, что оседанием частиц в суспензии можно пренебречь, фильтрат является жидкостью Стокса, движение жидкости в порах осадка ламинарное. В частности, установлено, что в координатах д—(йхЩ) - (где п — индекс текучести) получаются прямые линии в соответствии с экспериментами на системах карб-оксиметилцеллюлоза — двуокись кремния или окись алюминия. Отсюда следует, что в этих системах эмпирическая характеристика сопротивления осадка сохраняет постоянную величину в процессе фильтрования. В других экспериментах обнаружено, что удельное сопротивление осадка изменяется с течением времени. [c.58]

    Схема № 3. Компрессорную перекачку с предварительным охлаждением (рис. 102) применяют для дальнего транспортирования. Необходимость выбора такой схемы обусловлена тем. что несмотря на высокое давление подаваемого от источника углекислого газа обычная беском-прессорная или компрессорная перекачка здесь неприемлема, так как указанные схемы приводят к конденсации углекислого газа в трубопроводе и формированию двухфазной смеси. Согласно предлагаемой схеме, двуокись углерода вначале сжимается в компрессорах (линии 1,1 ) и переводится в новое термодинамическое состояние —в область сверхкритической температуры и давления, т. е. в область, где i>tкp и р>ркр. Затем проводят изобарическое охлаждение и конденсацию транспортируемой среды в теплообменном аппарате (линии 2,2 ) в результате чего температура двуокиси углерода становится ниже критической температуры, и сама углекислота переходит в жидкое состояние. В качестве теплообменного аппарата может быть использован либо аппарат воздушного охлаждения, либо теплообменник специальной холодильной установки. Аппарат воздушного охлаждения применим лишь в условиях, если температура окружающего воздуха не превышает 20—25 °С. Только при этом может быть обеспечен перевод охлаждаемой среды в область tособенности нашей страны, схема с аппаратами воздушного охлаждения может быть рекомендована за редким исключением в большинстве районов. [c.170]

    Пример, При ti=—12,0° С жидкая двуокись серы обладает давлением насыщенного пара pi = 0,9I38 атм, а При 2=—8,0°С имеет давление Рз= 1,091 атм. Найти теплоту испарения двуокиси серы. [c.254]

    Дву5>кись углерода, применяемая для тушения пожаров, выбрасывается из баллонов, где она находится в жидком состоянии под большим давлением. Мгновенно испаряясь, она образует белые хлопья углекислого снега , имеющие температуру минус 70—80°С. Попадая в очаг огня, хлопья испаряются, снижают температуру таящего вещества и разбавляют окружающий воздух. При содержании двуокиси углерода в воздухе в пределах 36—38 /о (об.) горение прекращается. Двуокись углерода является незаменимым средством для быстрого тушения небольших очагов пожара на ликвидацию огня требуется 2—10 с. Вследствие своей незлектропроводно-сти двуокись углерода применяется также для тушения загоревшихся электродвигателей и других электротехнических установок. Для тушения посредством двуокиси углерода применяют автоматически действующие стационарные установки, передвижные, переносные и ручные огнетушители (см. стр. 67). [c.62]

    Для точного дозирования твердых и жидких компонентов используются уже имеющиеся дозаторы. В состав покрытия входят смола, кокс, двуокись титана, растворители и пластификатор. Поскольку вязкость смолы при ни 1ких температурах достаточно велика, рекомендуется предварительно довести температуру смолы до 20-25°С. Кокс и двуокись титана подаются в смеситель, представляющий собой полый цилиндр с фарфоровыми шарами. После смесителя смесь пигмента и наполнителя подается в питатель, откуда порциями поступает в дисольвер, [c.320]

    Процесс нитрования циклогексана может также проводиться в паровой фазе 50%-ной азотной кислотой при 380—450 °С, атмосферном давлении, времени контакта 1—2 с и мольном соотношении циклогексан/кислота, равном 2 1. Выход нитроциклогексана — 60% выход побочных продуктов окисления — 20%. Газообразные продукты реакции содержат 50% (об.) N0, 20% (об.) N30 и 30% (об.) СО и СО . Окись азота после окисления в двуокись используется для производства гзотной кислоты. Жидкие продукты реакции, содержащие нитроциклогексан, циклогексан, циклогексанол, циклогексанон, низшие жирные кислоты и нитропарафины, разделяют методом ректификации. [c.312]

    Абсорбционная очистка газов может быть основана и на при ципе растворения СО2 и НаЗ в жидком поглотителе. Двуокись угд рода и сероводород — более тяжелые трехатомные газы — раств " ряются в жидкости лучше двухатомных газов, таких, как водорок окись углерода, азот. Регенерацию поглотителя в этом случае пр водят за счет снижения давления газа над поглотителем. Более по ное выделение газа из поглотителя достигается созданием вакууиц или продувкой поглотителя инертным газом.  [c.113]


Смотреть страницы где упоминается термин Двуокись жидком: [c.140]    [c.406]    [c.487]    [c.38]    [c.29]    [c.51]    [c.272]    [c.152]    [c.159]    [c.266]    [c.113]    [c.61]   
Справочник азотчика Том 1 (1967) -- [ c.3 , c.61 ]

Справочник азотчика Т 1 (1967) -- [ c.3 , c.61 ]




ПОИСК







© 2024 chem21.info Реклама на сайте