Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закрепление ковалентными связями

    Закрепление ковалентными связями [c.81]

    Более стабильные ХМЭ получают с помощью реагентов, функциональные группы которых способны к образованию ковалентных связей с материалом электрода. Чаще всего используют кислородсодержащие соединения с окси-, гидрокси- или карбокси-группами, хотя возможно закрепление и других групп. В частности, для ковалентного связывания ферментов используют амино-, имидазольные и тиоловые группы боковых цепей аминокислот белка. Большим преимуществом ковалентного связывания является отсутствие утечки модификатора с поверхности электрода. При этом формируется устойчивый слой, который не разрушается при повторном использовании ХМЭ. Разнообразие методов связывания позволяет не затрагивать электроактивные функциональные группы. Тем не менее всегда необходимо специально изучать активность модификатора в растворе и в иммобилизованном состоянии. [c.481]


    Активные красители. Представляют собой растворимые в воде соли органических кислот или оснований, содержащих подвижные (активные) атомы или группы, которые в момент крашения отщепляются, или активные (легко раскрывающиеся) связи. Достаточным для закрепления в волокне сродством, как правило, не обладают. В процессе крашения реагируют с функциональными группами волокна и образуют с ним ковалентные связи в результате отщепления активных атомов или групп или раскрытия активных связей. Применяются для крашения целлюлозных, белковых и некоторых синтетических волокон. [c.42]

    В некоторых случаях применения дисперсий адсорбционный тип закрепления оказался недостаточным, особенно если полученный латекс должен сохранять устойчивость при добавлении сильных растворителей, что может приводить к десорбции стабилизатора с поверхности частиц. Закрепление должно быть Осилено за счет создания ковалентных связей между диспергированным полимером и нерастворимым полимерным компонентом стабилизатора. В альтернативном случае после адсорбции молекулы стабилизатора могут химически связываться между собой с образованием сетчатой структуры на поверхности частицы. [c.75]

    Можно предотвратить смещение физически закрепленных стабилизаторов под действием сильных растворителей, т. е. более прочно закрепить якорные компоненты на полимерной частице, создав условия для появления ковалентных связей. По одному из методов [32 ] в стабилизатор и дисперсный полимер вводили комплементарные реакционноспособные группы. По окончании полимеризации полученную дисперсию для ускорения последующих реакций между стабилизатором и дисперсной фазой выдерживали при повышенной температуре или вводили соответствующий катализатор. Пример такой реакции —взаимодействие звеньев малеинового ангидрида в частицах полимера со звеньями оксиэтилметакрилата в стабилизаторе. [c.82]

    Селективные сорбенты можно получить в результате закрепления на поверхности носителя (посредством ковалентных связей) мономолекулярного слоя жидкой фазы. Такие сорбенты с ориентированным расположением молекул фазы называют иногда щетками . Химическое связывание неподвижной фазы устраняет или значительно уменьшает все проблемы, связанные с частичным вымыванием жидкой фазы из колонки при традиционной распределительной хроматографии, как-то Дрейф нуля при ГЖХ с программированием температуры или жидкостной градиентной хроматографии, загрязнение продукта жидкой фазой при препаративном выделении вещества, трудности (по той же причине) совмещения газового хроматографа с масс-спектрометром в связи с весьма высокой чувствительностью последнего, и т. п. [c.208]


    Для достижения высокой прочности к стирке прежде всего необходимо знать механизм закрепления красителя на волокне. На практике используется пять различных способов образование твердого раствора, солеобразование, завязывание водородных связей, введение в волокно нерастворимых окрашенных соединений и образование ковалентных связей с волокном. Конкретный механизм целиком определяется химическими и физическими свойствами волокна, в частности характером присутствующих в нем функциональных групп и его гидрофильностью или гидрофобностью. [c.368]

    В фотолитографии химические изменения в фоторезисте инициируются светом. Эти изменения вызывают разрыв (или образование) ковалентных связей в светочувствительных химических группах, закрепленных на полимерной структуре. Изменения в связях приводят к локальному увеличению (или уменьшению) растворимости фоторезиста в подходящем растворителе. Воздействие света через маску приводит к формированию образа маски, который может быть проявлен простым промыванием. Обычно, однако, забывают, что эта простота достигается тщательным конструированием полимера с определенным фотохимическим поведением. [c.135]

    Как правило, иммобилизация белков на поверхности кремнезема проводится методами, широко используемыми для закрепления аминосодержащих лигандов в аффинной хроматографии (см. разд. 7.4), однако для повышения стабильности хиральных фаз данного типа используют поперечную сшивку молекул белков. В работе [299] хиральная фаза была получена простой поперечной сшивкой глутаровым альдегидом молекул БСА, адсорбированных на поверхности силикагеля, при этом особо отмечено, что отсутствие прочной ковалентной связи БСА с поверхностью носителя существенно не изменяет стабильности фазы. [c.447]

    Весь комплекс характерных свойств металлов предопределяется общей всем им особенностью внутреннего строения. Неметаллические тела слагаются либо из ионов, либо из ковалентно связанных атомов каждый электрон в них локализован, как бы закреплен в пространстве, принадлежит какому-то определенному атому или паре атомов (в случае ковалентной связи). В металлах же часть валентных электронов отщеплена от атомов и обладает свободой перемещения между атомами. Металлы построены, таким образом, из ионов и блуждающих между ними электронов. Отсюда и высокая электропроводность металлов. Присутствием свободных электронов объясняется и высокая теплопроводность металлов, а также их высокая отражательная способность по отношению к электро- магнитным волнам, т. е. непрозрачность и характерный блеск металлов. Наконец, наличие свободных электронов объясняет и свойственную металлам пластичность. При всякой насильственной деформации куска металла происходит смещение пластов из ионов относительно друг друга, но разрыва не происходит, так как электроны, соответственно переместившись, продолжают осуществлять связь между пластами металлических ионов. [c.612]

    Эта схема, объясняющая исчезновение индукционного периода при обработке катализатора органосиланом, одновременно демонстрирует процессы, приводящие к отщеплению закрепленного комплекса от полимерной матрицы в случае, если закрепление обеспечивается ковалентными связями. [c.331]

    Возможно, что основное значение для транс-влияния имеет не односторонняя деформация комплексообразователя, а некоторое его смещение от центрального положения относительно всех лигандов в сторону того нлн иного из них (рис. XIV-103). Так как подобное смещение можёт вызываться не только электростатическими эффектами, но и возникновением ковалентных связей, такая трактовка транс-влияния сохраняет свое значение и при преимущественно ковалентном характере внутренней сферы. Действительно, даже очень малое приближение комплексообразователя к одному из лигандов и отдаление от противолежащего может обусловить существенное закрепление связи первого и ослабление связи второго. [c.457]

    Исследования по взаимодействию кварца и гематита с амфотерными собирателями с использованием электрофореза показали, что в кислой области реагент закрепляется в результате электростатической сорбции за счет взаимодействия аммониевой группы с отрицательно заряженной поверхностью минерала, а при pH = 7 - 9 закрепление реагента на гематите происходит в результате хемосорбции с образованием ковалентной связи. Эте область в принятых условиях соответствовала высокой флотируемости гематита [41]. [c.151]

    Метод спиновых меток заключается в том, что к непарамагнитной молекуле прикрепляется ковалентной, гидрофобной или какой-либо иной связью стабильный радикал так, чтобы его свободная валентность осталась незатронутой. Особенно широко для этого используются азотнокислые радикалы К1-(К2)М-0 различного строения [37]. В зависимости от природы связи метки с исходной молекулой, геометрии окружения и других причин группа >N0 может быть жестко закрепленной (тогда СТС будет анизотропной), движение этой группы может быть заторможенным или свободным. Характер движения отчетливо проявляется в форме спектра и служит важным источником информации об исходной молекуле. [c.285]


    Фиксацию (закрепление) красителей на активных центрах волокна. Стадия протекает быстро, практически мгновенно. Характер образуемой связи краситель-волокно зависит от вида волокна и природы красителя и определяет гл. обр. устойчивость окраски к стирке и др. мокрым обработкам. Напр., активные красители на целлюлозных волокнах удерживаются в результате образования прочной ковалентной связи (энергия связи 110-630 кДж/моль), на белковых волокнах-ковалентных, ионных (41-82 кДж/моль) и водородных (21 -42 кДж/моль) связей, кислотные красители на белковых волокнах-в результате образования нонных, водородных связей и ван-дер-ваальсовых сил (энергия до 8,5 кДж/моль), прямые и кубовые красители на целлюлозных волокнах - водородных связей и ван-дер-ваальсовых сил. При наличии в молекуле иона тяжелого металла (см., напр.. Протравные красители) краситель с белковыми волокнами образует координац. связи (до 100 кДж/моль), а также ионные и водородные. На хим. (синтетич.) волокнах краситель удерживается благодаря ван-дер-ваальсовым силам и водородным связям (дисперсные красители), ионным связям (кислотные и катионные красители на полиамидном и поли-акрилонитрильном волокнах соотв.), ковалентным связям (активные красители на полиамидном волокне), ионным и координац. связям (кислотные металлсодержащие красители на полиамидном волокне). О механизмах и особенностях К. в. разл. классами красителей см. также Активные красители, Дисперсные красите.ш. Катионные красители. Кислотные красители. Кубовые красители, Прямые красители и др. [c.500]

    Электронное строение органических соединений возникает в результате образования химических связей нескольких типов ковалентной а-связи, ковалентной л-связи, сопряженной я,тс- и и,л-связи, ароматической п-связи, донорно-акцепторной (координационной) о- или п-связи, включая водородную связь. Образование химической связи между атомами приводит к превращению атомных орбиталей в молекулярные орбитали (МО). Эти МО могут быть локализованными (закрепленными) между двумя атомами или же делокализованными между тремя или большим числом атомов. [c.44]

    Наиболее широко применяемыми носителями в твердофазном ИФА являются 96-луночные планшеты и пробирки из оптически прозрачного полистирола, поливинилхлорида или других полимерных материалов, с внутренней поверхностью которых связываются антитела. Как отмечалось ранее, в большинстве случаев иммобилизацию проводят адсорбционно, что упрощает процедуру, но снижает прочность связи белка с носителем. Увеличение прочности связывания может быть достигнуто при ковалентном закреплении антител на пластике. [c.206]

    Описанный подход люжно использовать и для очистки рестриктов ДНК, содержащих определенную последовательность, из продуктов переваривания рестриктазами суммарных нативных ДНК или для оценки содержания определенных генов в исследуемой ДНК путем титрования избытком меченой кДНК. Авторы отмечают, что аналогичные задачи решались путем гибридизации с НК, сорбированными на целлюлозе. Однако гибридизация с участием иммобилизованных НК идет хуже, а при последующем плавлении гибридов с матрицы могут частично сниматься и пе закрепленные ковалентной связью молекулы, по которым идет отбор. [c.439]

    Термоотверждаемые композиции для покрытий на основе полимерных дисперсий, полученных с использованием закрепленного ковалентными связями стабилизатора и непрерывной фазы с высоким содержанием раство-)ителя для полимера. [c.324]

    Хром (III) очень прочно фиксируется волокном, образуя координационные связи с неионизированными аминогруппами кератина, а также ковалентные связи с карбоксильными группами. При этом хром сохраняет способность к образованию комплексных соединений состава 1 1, 1 2 и, реже, 1 3с хромовыми красителями, обеспечивая их прочное закрепление на волокне. Комплексообразование сопровождается, как правило, углуб-лением первоначального цвета красителя. Следует отметить, что данные красители могут присоединяться к кератину шерсти и ионными связями по механизму, обычному для кислотных красителей. Взаимодействие хромовых красителей с волокном можно представить следуюш,им образом  [c.89]

    Хотя главной областью применения активных красителей служит крашение хлопка, принцип закрепления красителя на волокне за счет образования ковалентных связей можно распространить и на другие волокна. В качестве подходящих материалов прежде всего следует назвать шерсть и полиамидные волокна, которые содержат аминогруппы. Для этих видов волокон уже выпускаются специальные активные красители. Сюда относятся дисперсные красители группы процинайла, предназначенные для окрашивания полиамидных волокон, и металлсодержащие комплексные красители состава 1 2 (проциланы) для крашения шерсти. Оба ряда красителей содержат активные группы, специально приспособленные для этих волокон. Так, в проциланах активной группой является акриламидная группа, причем она реагирует достаточно медленно для того, чтобы краситель успел полностью проникнуть в массу волокна прежде, чем он прочно закрепится на нем. [c.394]

    Принципиально новые активные красители, созданные в 1956 г., позволяют получать яркие и прочные окраски на целлюлозных волокнах благодаря образованию химической (ковалентной) связи с волокном. Активные красители не ослабляют волокно при крашении, просты в применении, при этом не требуется вспомогательных веществ в процессе крашения и дополнительных обработок для проявления или закрепления окраски. По цветовой гамме и насыщенности тона они превосходят прямые, кубовые, азоидные и, конечно, сернистые красители, а по устойчивости окрасок к отдельным видам физико-химических воздействий уступают только кубовым антрахиноновым. Однако следует отметить недостаточно высокую степень фиксации некоторых из них, низкую прочность окрасок к действию хлора, неорганических кислот и щелочей, а также высокую стоимость. Разработки в области активных красителей направлены на повышение степени фиксации до 100% (красители с двумя и более активными группами), расширение ассортимента и улучшение технологии их применения. [c.155]

    Денатурация, по-видимому, характеризуется некоторым сбщим расслаблением довольно жестко закрепленных структурных отношеиий, характеризующих нативный белок. Это приводит к раскручиванию свернутых полинептидных цепей (стр. 46) с обнажением ранее замаскированных реактивных групп. Внутримолекулярные изменения структуры белковой молекулы, имеющие место при денатурации, не сопровождаются разрывом ковалентных связей и обусловлены обратимым или необратимым нарушением [c.18]

    Реагенты на твердой матрице. Вероятно, несколько большее распространение имеют тест-средства, приготовленные на твердом носителе — на бумаге, ткани, на синтетических органических полимерах, силикагеле и др. Природа носителя, способ его прш отовления и способ иммобилизации реагентов на нем имеют весьма существенное значение. Реагент иммобилизуют адсорбцией, испарением растворителя после импрегнирования раствором реагента в этом растворителе, другими физическими или химическими (ковалентными) методами. Относительно слабая фиксация физически закрепленных реагентов на поверхности носителя и как следствие этого частичное смывание его при контакте с раствором являются основным недостатком таких тест-систем. Увеличения прочности связывания реагента с носителем добиваются образованием химических связей между ними (химическая иммобилиза- [c.214]

    Подавляющее большинство исследованных и испытанных закрепленных катализаторов относятся к типам, в которых связи комплекса с носителем относятся к координационным или ковалентным типам. Опыт применения рассматриваемых катализаторов показал, что, обладая высокой активностью, они, как правило снижают ее при последующих циклах (см. например [419]). Причиной нестабильности является, вероятно, сам способ связывания. В ходе каталитического процесса, протекающего под влиянием комплекса, закрепленного на поверхности носителя (напомним, что последний в этом случае является макролигандом), происходит внедрение реагентов во внутреннюю координационную сферу, сопровождаемое или изменением валентности металла, или вытеснением одного или нескольких лигандов из этой сферы. В последнем случае несомненно, что таким лигандом может быть и полимерный лиганд. Очевидно, это будет означать необратимый уход закрепленного комплекса в раствор. В случае изменения валентности металла появление в координационной сфере новых лигандов [c.328]

    И. Б. Берсукер и А. В. Аблов отмечали, что метод Сыркина недостаточно обоснован и теоретически, так как неясна физическая природа сил ч с-закрепления. В сушности, весь результат основан на выборе гибридизации типа sd, который в основном произволен. Действительно, не ясно, почему атом платины (П) в плоскоквадратных комплексах участвует в связи двумя орбиталями, в то время как его ковалентность равна четырем. [c.210]

    Аффинная иммобилизация антител, выделение специфических антител из сыворотки включает стадию их адсорбции на иммобилизованном антигене и последующую элюцию путем разрушения связи антиген — антитело при сильно кислых или щелочных значениях pH либо концентрированными растворами солей (например, ЫН4СЫ5). Выделение в столь экстремальных условиях может неблагоприятно сказываться на аффинности антител, а последующее ковалентное или адсорбционное закрепление молекул на носителе в ряде случаев приводит к дальнейшему снижению способности эффективно связывать антиген. [c.210]

    Отсюда определенный интерес представляет использование в анализе иммуносорбентов, полученных путем аффинного связывания специфических антител с иммобилизованным на носителе антигеном. Связь антиген — антитело обратима, поэтому для предотвращения смывания антител с сорбента разработаны пути последующего ковалентного закрепления молекул, образовавших специфический комплекс на носителе. Для стабилизации комплекса эффективно применяются обычные сшивающие агенты глутаровый альдегид, диазиды, изоцианаты. Процедура иммобилизации включает инкубацию связанного с носителем антигена с антисывороткой, отмывку носителя, проведение реакции с сшивающим антигеном и заключительную отмывку для удаления избытка (рис. 24). Процесс может проводиться как в реакторах перемешивания, так и в колоночном режиме. Данный подход детально изучен на примере иммобилизации антител против сывороточного альбумина человека на сефарозном сорбенте. В результате такого связывания по крайней мере половина активных центров иммобилизованных антител способна принимать- участие в последующих реакциях с антигеном, что является недостатком метода. Однако [c.210]


Смотреть страницы где упоминается термин Закрепление ковалентными связями: [c.282]    [c.479]    [c.283]    [c.282]    [c.502]    [c.106]    [c.418]    [c.209]    [c.77]    [c.183]    [c.92]    [c.391]    [c.138]    [c.156]    [c.207]    [c.184]    [c.288]   
Смотреть главы в:

Дисперсионная полимеризация в органических средах -> Закрепление ковалентными связями




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Связи ковалентные Связи

Связь ковалентная



© 2025 chem21.info Реклама на сайте