Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Красители адсорбция на волокнах

    Адсорбция красителя поверхностью волокна. Предполагается, что причиной адсорбции является силовое поле на поверхности волокна. В адсорбции участвует не только внешняя, но и внутренняя поверхность волокна. Внутренняя поверхность обладает различной степенью доступности для частичек адсорбируемого красителя. Кроме того, поверхность волокна неоднородна и имеет участки с разной активностью. Поэтому в процессе крашения создаются такие условия, при которых обеспечивается равномерная адсорбция частиц красителя по всей внешней и внутренней поверхности волокна. Адсорбция протекает практически мгновенно. [c.267]


    Прямые красители удерживаются волокном силами адсорбции и водородными связями. Плоские молекулы прямых красителей могут сближаться с вытянутыми молекулами целлюлозы на короткие [c.295]

    Периодическими называют такие способы крашения, при которых партия волокна, пряжи или ткани в течение более или менее продолжительного времени (например, 20—90 мин, а иногда и более) окрашивается в одной красильной ванне. При этом все физико-химические стадии (диффузия красителя в растворе или конвективный обмен обедненных красителем слоев растворов в межволоконных пространствах окрашиваемого материала, адсорбция молекул красителя волокном и диффузия Их с поверхности внутрь волокна) протекают одновременно, но с разными скоростями. Чаще всего лимитирующей стадией является диффузия красителя в волокне, особенно в первые моменты процесса крашения. [c.71]

    В реальной практике крашения такой процесс адсорбции наиболее близко отвечает крашению гидрофобных синтетических волокон дисперсными красителями. Равновесные изотермы адсорбции в этом случае имеют линейный вид, и коэффициент распределения красителя между фазами волокна и раствора является величиной постоянной, численно равной тангенсу угла наклона таких прямых. Принято считать, что адсорбированный по этому механизму краситель образует в фазе гидрофобного волокна твердый раствор, т. е. переходя из красильной ванны в волокно, краситель как бы растворяется в нем. Однако такой процесс с равным успехом можно относить и к типично адсорбционным, когда степень насыщения волокна молекулами дисперсного красителя очень невысока. Краситель в волокне удерживается силами Ван-дер-Ваальса, водородными связями и ди-поль-дипольным взаимодействием. [c.55]

    К другому классу химических соединений принадлежат основные красители — катионные соединения, растворимые в воде за счет присутствующего в их молекуле четвертичного атома азота. Основные красители применяются для крашения полиакрилонитрильных волокон. Они образуют соли с карбоксильными и сульфогруппами, введенными в волокно с соответствующими сомономерами на стадии полимеризации. Существует два практически важных типа основных красителей, в которых четвертичный атом азота либо находится в заместителе, как в красителе 29, либо входит в состав гетероцикла, составляющего часть хромофорной группы, как в красителе 30. Оба типа красителей обычно синтезируют путем превращения соответствующих окрашенных аминов, содержащих третичный атом азота, в четвертичные аммониевые соединения. Солеобразование между красителем и волокном обеспечивает удовлетворительную прочность выкрасок. Однако слишком большая скорость адсорбции красителя приводит к неравномерности окраски, и для [c.373]


    Из двух других физико-химических стадий процесса крашения—адсорбции молекул красителя поверхностью волокна и диффузии их внутри волокнистого материала — наиболее медленной является стадия диффузии и в большинстве известных технологических процессов она определяет общее содержание и распределение красителя в волокне. [c.54]

    Адсорбция красителей волокнистыми материалами. Движущую силу самопроизвольного перехода молекул красителя из. красильного раствора в волокно при погружении его в красильную ванну обычно выражают в виде разности химических потенциалов красителя в волокне и в растворе в стандартных условиях, иными словами, стандартным сродством красителя к волокну (уравнение 1). [c.54]

    При непрерывных процессах крашения общее количество красителя, нанесенного на волокно, зависит от степени отжима текстильного материала после его пропитки и от концентрации красителя в пропиточном растворе. Последующие процессы тепловой обработки обусловливают эффективность и полноту прохождения физико-химических процессов диффузии красителя в волокне, адсорбции и в некоторых случаях реакции молекул красителя с активными группами волокна. Незафиксированный в процессе тепловой обработки краситель удаляют из окрашиваемого материала при его последующей промывке. От полноты [c.73]

    Суммарная концентрация катионов красителя и ионов водорода в волокне должна быть равна общему содержанию в нем кислотных групп [Кр+]в+[Н+]в. При соблюдении этого условия уравнение для расчета сродства красителя к волокну при ионообменной адсорбции приобретает вид (18). [c.58]

Рис. I. 1. Кривые адсорбции волокном активных красителей из разбавленных растворов Рис. I. 1. <a href="/info/9078">Кривые адсорбции</a> <a href="/info/983085">волокном активных красителей</a> из разбавленных растворов
    Крашение найлона и других новых волокон и смешанных тканей еще представляет трудности, но уже намечаются пути их разрешения. Требования к прочности красителей, включая прочность к новым обработкам текстильных материалов становятся осе строже, и можно предвидеть, что поиски прочных и дешевых красителей будут продолжаться и в дальнейшем. Дешевизна была главной целью производства со времени зарождения анилинокрасочной промышленности. Другими техническими проблемами, требующими разрешения, является простая методика получения ровных выкрасок за минимально короткое время и применение при крашении более простой техники и процессов. Понятно, что при существующем большом количестве классов красителей открытие новых классов в будущем весьма затруднено и маловероятно, но существует обширное поле деятельности по изменению красителей с уже известными хромофорами и улучшению их свойств с точки зрения их применения. Что касается теоретической стороны, то, как это ни странно, химия цвета до сих пор остается открытым вопросом. Наши данные о зависимости между химическим строением и цветом красителей в большой мере эмпиричны. Физики не могут еще применить методы квантовой механики для расшифровки и предсказания спектров поглощения молекул более сложных, чем некоторые углеводороды. Немногое известно и о действии света на красители, в результате чего происходит выцветание, и о какой-либо зависимости между цветом и химическим строением красителя, с одной стороны, и его прочностью к свету, — с другой. Много нерешенных проблем имеется и в отношении каталитической активации некоторыми красителями процесса фотохимического распада целлюлозы. Теории крашения также находятся в совершенно зачаточном состоянии, несмотря на изредка появляющиеся по этому вопросу работы. Даже разбирая простейший случай сродства азокрасителя бензидинового типа к целлюлозе, нельзя привести никаких точных зависимостей между строением молекулы красителя, кинетикой адсорбции и природой сил, связывающих краситель с волокном. [c.40]

    По значениям сродства красителя к волокну и теплового эффекта адсорбции можно вычислить изменение энтропии А5° (уравнение 21). [c.61]

    Для описания процесса диффузии красителя в волокне, осложненного действием сил адсорбции и стерическими препятствиями, часто используют уравнение (27). [c.63]

    Сродство прямых красителей к целлюлозе уменьшается при нарушении плоскостной конфигурации молекулы красителя, а также при накоплении в ней сульфогрупп, вызывающих повышение растворимости красителя и снижение его адсорбции волокном вследствие проявления эффекта отталкивания одноименных зарядов этих групп в красителе и на поверхности волокна. [c.95]


    При соприкосновении растворов этих рацемических красителей с волокнами шерсти адсорбция антиподов красителей протекала с различными скоростями и через некоторое время раствор над адсорбентом приобретал (—)-врашение. При большом избытке адсорбента за 72 часа в растворе оставался только (—)-антипод, т. е. происходило полное расщепление рацемата. (+)-Антипод красителя связывался при этом с поверхностью волокна шерсти значительно прочнее, чем (—)-антипод. [c.176]

    Чем выше сродство красителя к волокну, тем менее адсорбция зависит от воздействия воды и влажного воздуха. Красители со сравнительно высоким сродством могут быть закреплены на волокне даже при большой влажности воздуха, в то время как красители с низким сродством закрепляются только в абсолютно сухой атмосфере (термофиксация). [c.49]

    Кривая, изображенная на рис. 1.1, показывает, что в процессе кращения до добавления щелочи происходит некоторое насыщение волокна красителем, связывающимся с ним силами адсорбции, после добавления щелочи новая порция красителя выбирается волокном. Разница между пунктирной и сплошной линиями на рисунке представляет количество красителя, адсорбированного волокном, но не связанного с ним химически. Высота пунктирной [c.49]

    Целлюлозные волокна. В отличие от реакции гидролиза и проходящих в гомогенной среде модельных реакций фиксация активных красителей на волокне представляет собой гетерогенную реакцию, в которой физические процессы адсорбции и химическая реакция с целлюлозой и водой частично совпадают и влияют друг на друга. Поэтому активный краситель характеризуют прежде всего выходом фиксации, достигаемым в различных условиях проведения этого процесса. Вторым важным фактором является скорость прохождения процесса фиксации. Влияние этих двух [c.277]

    Катионные красители. Полиакрилонитрильные волокна способны выбирать катионные красители из р-аствора и образовывать с ними прочную связь за счет солеобразования внутри волокна. На концах полимерных цепочек полиакрилонитрила находятся кислотные группы (—ЗОзН и —ОЗОзН) кроме того, при полимеризации добавляют небольшие количества кислотных мономеров для повышения сродства к красителям [50]. Адсорбция красителя волокном находится в прямой зависимости от числа кислотных групп на концах цепи или от длины цепочки чем больше кислотных групп, тем выше количество связанного красителя. Прежде чем катионный краситель попадает к способным связаться с ним группам, он дол- -жен адсорбироваться поверхностью волокна (за счет электростатических сил), раствориться в субстанции волокна и диффундировать к связующим группам. После того как катионный краситель Проникнет внутрь волокна, прочность окраски к мокрым обработкам и трению значительно увеличится. [c.78]

    И поэтому красильную ванну можно быстро нагреть до этой температуры, а затем медленно довести до кипения. Скорость адсорбции красителей полиакрилонитрильными волокнами быстро возрастает, как только температура превысит критическую. Если ее повышают слишком быстро, то циркулирующий красильный раствор прогреется неодинаково и окрашивание может получиться неровным, так как краситель будет предпочтительнее выбираться теми участками волокна, где температура выше. [c.79]

    Реакция между красителем и волокном обязательно связана с адсорбцией, которая у белковых.волокон, в отличие от целлюлозных, включается в механизм крашения и зависит от pH. Адсорбция молекул красителя, содержащего сульфогруппы, должна [c.253]

    За последние годы сложный процесс прямого крашения все больше уточняется проблема изучена с новых точек зрения, так что имеется много данных для окончательной общей оценки всех факторов. Были определены характеристики для равновесия при исчерпывании ванны на 50%, определяющие диффузионные и миграционные свойства красителей. Новым экспериментальным подходом является измерение скорости крашения для ряда красителей при равных концентрациях соли. Значение этих данных для практики крашения заключается в том, что скорость крашения обычно связана с выравнивающей способностью. Была предложена теория поверхностного потенциала для объяснения влияния соли и температуры на кажущийся коэффициент диффузии. По этой теории диффузия красителя в целлюлозную пленку рассматривается как процесс активированной диффузии и абсорбции. Исходя из ряда упрощающих допущений, было разработано уравнение диффузия— адсорбция для абсорбции прямых красителей целлюлозной пленкой это уравнение частично справедливо для данных, полученных при высоких концентрациях соли, но неверно при низких концентрациях. Недавно Нил сделал попытку составить простую физическую картину влияния электрических сил на процесс крашения без учета влияния таких сил ближнего порядка, как водородные связи, определяющие сродство красителя к волокну и природу их связей. Электростатический эффект, вызываемый зарядами волокна и ионов красителя, не является основным фактором, определяющим сродство красителя к волокну, но изменения силы и характера электростатических сил определяют влияние соли на процесс крашения и влияние кислоты на крашение шелка и шерсти. [c.1445]

    В качестве возможного метода очистки рекомендуются ионообменные смолы [43], а также адсорбция красителя хлопком из высококонцентрированного водного раствора с последующей экстракцией красителя с волокна водой или водным пиридином [44]. [c.1907]

    Крашение прямыми красителями проводится в присутствии электролитов (Na l, Na2S04), повышающих адсорбцию красителя волокном. Прямые красители имеются всех цветов. Устойчивость окрасок прямыми красителями к стирке и другим влажным обработкам невелика в водной среде, особенно в присутствии моющих средств, и в щелочной среде наблюдается десорбция красителей с волокна. Для повышения устойчивости окрасок применяются дополнительные обработки окрашенных материалов, чаще всего закрепителями ДЦУ (продукт конденсации дициано-диамида с формальдегидом) и ДЦМ (смесь ДЦУ с солью меди). Эти закрепители образуют в порах волокна нерастворимую в воде соль красителя, благодаря чему повышается устойчивость окрасок к стирке. Закрепитель ДЦМ, кроме того, повышает устойчивость красителей определенного строения к свету вследствие образования комплексов с медью. Имеются прямые красители, которые упрочняют, диазотируя и сочетая их на волокне (см. стр. 305). [c.246]

    Дисперсные красители гидрофобны. Они при кращении растворяются в обладающих гидрофобными свойствами синтетических и ацетатных волокнах. Растворимость в воде дисперсных красителей крайне мала, и только при повыщенной температуре (100°С) она достигает 1—2%. Однако в волокно проникают только молекулы дисперсных красителей, а не их агрегаты. В процессе краще-ния дисперсные красители частично растворяются в воде, а молекулы их из водного раствора адсорбируются на поверхности волокна и диффундируют внутрь. Это процессы — растворение красителя, адсорбция и диффузия в волокно — протекают в течение всего процесса кращения до его заверщения. [c.319]

    Влияние увеличения молекулярного веса растворенного вещества (эквивалентное влиянию увеличения размера частиц, см. стр. 112) на увеличение адсорбции на твердом теле при низких концентрациях иллюстрируется данными табл. 6 на стр. 101. Однако молекулярная агрегация приводит к замедлению броуновского движения (см. стр. 110,120) и уменьшает скорость диффузии (стр. 146) молекул красителя. Удивительно, что коэфициент диффузии красителя, по крайней мере через целлофан, растет до максимального, а затем падает с увеличением концентрации соли. Причина этой аномалии неизвестна, ио факты указывают, что явление это чрезвычайно слогкное. Это наводит на мысль, что в случае этих непосредственных красителей, которые мало или почти не адсорбируются на хлопке в отсутствии солей, роль последних заключается н понижении -потенциала (стр. 201) отрицательно заряженной целлюлозы, в результате чего анионы красителя могут приближаться. При низкой концентрации соли двухвалентных металлов более эффективно способствуют адсорбции, чем соли одновалентных. Сернокислый алюминий, однако, менее эф ])ек-тивен, чем хлористый натрий, возможно, потому, что он коагулирует краситель. Рис. 8 показывает, что при высоких концентрациях соли, чем больше способность волокна к набуханию, тем больше обнаруживается и адсорбция краски, вовможно, вследствие большей доступности больших агрегатов красителя внутрь волокна. Относительно низкую адсорбцию на регенерированной целлюлозе при малых концентрациях соли можно объяснить понижением сродства между краской и волокном вследствие деградации, аналогичной той, которая происходит при образовании оксицеллюлозы (стр. 163). [c.510]

    Таким образом, единый цикл физико-химических явлений, обусловливающих доставку в волокно молекул красителя и фиксирование их активными группами волокнообразующего полимера, при крашении по непрерывным схемам нарушается. На стадии пропитывания волокнистого материала в основном происходит принудительное перемещение молекул или ионов красителей из пропиточной ванны в раствор, заполняющий межво-локонные пространства, и лишь в очень незначительной степени начинается заторможенная адсорбцией диффузия красителя в субмикроскопических порах волокна. При увеличении продолжительности пропитки или при инициировании на этой технологической стадии адсорбционно-диффузионных процессов степень проникновения красителя внутрь волокна может существенно возрасти. В основном же диффузионные процессы и фиксирование красителя в волокне протекают на стадии тепловой обработки после пропитки и отжима текстильного материала. [c.73]

    В начальный период крашения при погружении полиакрило-нитрильного волокна в раствор катионного красителя происходит адсорбция катионов красителя, обусловленная в основном электростатическим притяжением к отрицательно заряженной поверхности волокна. Образование адсорбированного слоя создает большой концентрационный градиент, способствующий диффузии красителя внутрь волокна. Однако перераспределение катионов красителя из поверхностного слоя внутрь волокнистого материала протекает очень медленно, так как полиакрилонит-рильное волокно гидрофобно и практически не набухает в воде. Свободный объем внутри волокна, необходимый для диффузии и фиксации молекул красителя, возникает в результате тепловых колебаний участков макромолекул полимера. У полиакрилонитрильных волокон такая подвижность макромолекул начи- [c.118]

    При крашении кубовыми красителями (т. е. антрахиноновыми или инди-гоидными) сначала восстанавливают нерастворимый пигмент до растворимой бесцветной лейкоформы действием восстановителя, обычно гидросульфитом натрия в щелочной среде. После адсорбции красителя на волокне последний окисляют, Б результате чего вновь образуется исходный нерастворимый пигмент, который фиксируется на ткани. Превосходная прочность красителей этой группы объясняется очень плохой растворимостью пигмента в окисленном состоянии. Раньше окисление проводилось исключительно действием воздуха сейчас для этой цели используется химическая ванна. Типичная окислительная ванна может иметь один из следующих составов 1) 2 вес. "о бихромата калия -1-2 вес.% уксусной кислоты 2) 1 вес. о пероксобората натрия или 3) 1 вес.% перекиси водорода. Соответственно нужно регулировать pH и температуру ванны [17, 41]. [c.489]

    В отличие от процесса крашения животного волокна кислотными красителями, когда имеет место химическое взаимодей-гтвие между красителями и веществом волокна, при крашении прямыми красителями происходит лишь поглощение красителя паверхностью волокна (адсорбция красителя). [c.173]

    Целлюлозные волокна окрашивают прямыми красителями в слабощелочной среде, которую создают введением кальцинированной соды (1—(2% от массы волокнистого материала). Некоторые прямые красители (например. Прямой чисто-голубой и Прямой диазосиний К) чувствительны к щелочам, поэтому крашение ими ведут в нейтральной ванне в присутствии электролитов, чаще всего поваренной соли. Присутствие в ванне электролита уменьшает отталкивание одноименно заряженных частиц целлюлозы и красителя и облегчает адсорбцию красителя поверхностью волокна. [c.115]

    Изложенные факты заставили некоторых исследователей отказаться от объяснений защитного действия ингибиторов исключительно физической адсорбцией. Так, Мишель и Гагер уподобляют адсорбцию ингибитора на металле адсорбции молекул красителя на волокне. Бекер и Зисман " предполагают даже значительное электронное взаимодействие между молекулами азотсодержащих ингибиторов и поверхностью металла. Женнн и Хюгель в 1954 г. установили, что при использовании меркаптанов в качестве ингибиторов коррозии железа в кислоте они разлагаются при соприкосновении с металлом, на поверхности которого образуется защитная пленка сульфида железа. [c.57]

    Кислотные красители. Шерстяное волокно окрашивается анионными красителями в кислой среде. При этих условиях диссоциация карбоксильной группы шерсти ослаблена, а аминогруппы, присоединив протон, превращаются в ионы аммония, количество которых находится в прямой зависимости от pH красильного раствора. Краситель в воде диссоциирован и его анион электролитически связывается с шерстью за счет ионов аммония. Адсорбция красителя при снижении pH возрастает и достигает максирлума при определенном его значении, зависящем от красителя [c.59]

    Прочность окрасок можно повысить последующей обработкой таннином и солями сурьмы, например рвотным камнем (антимонил-тартрат калия). Высокое сродство основных красителей к белковым волокнам делает необходимым применение в процессе крашения замедлителей. Для этой цели можно употреблять небольшое количество уксусной кислоты. Свободные ионы водорода конкурируют с ионами красителей за вступление в электроотрицательные участки волокна и снижают скорость адсорбции красителя. Адсорбция Метиленового синего шерстью при pH ниже 6 значительно уменьшена и при pH 4,5 становится совсем низкой [7]. Кристаллический фиолетовый [8] ведет себя так же. Таким образом, на выбирание основных красителей волокном заметно влияет изменение pH в пределах 4—6 [9]. [c.114]

    Для изучения взаимодействия активных красителей с углеводами, независимо от специфических условий реакции красителя с волокном, разные авторы [47—50] провели ряд экспериментов на моделях целлюлозы, т. е. с растворимыми полиатомными спир-тами, сахарами и крахмалом. Чаще всего в качестве модельных соединений применяют сорбит, маннит и гликозиды, у которых соотношение первичных и вторичных ОН-групп такое же, как в целлюлозе. D-глюкоза и целлобиоза содержат по одной дополнительной глюкозидной гидроксильной группе, которая у целлюлозы отсутствует или имеется в весьма незначительном количестве в концевой группе. Поэтому BayijrapTe [51] избрал в качестве моделей а-метилглюкозид, содержащий только одну первичную и три вторичные ОН-группы, и а-метил-О-изорамнозид, у которого в положении 6 нет ОН-группы. При проведении этих исследований он использовал также глюконовую и сахарную кислоты. Продукты реакции хлортриазиновых и акриламидных красителей со всеми модельными сахаридами подвергались хроматографическому анализу, результаты которого показали, что и первичные и вторичные гидроксильные группы углеводов способны вступать в реакцию с активными красителями. Единственным соединением, не всту--яившим в реакцию с красителем, оказалась сахарная кислота (см. также [52]). На основании этих данных было сделано заключение, что с вторичными гидроксильными группами реакция не проходит [46]. Инертность альгинатов натрия по отношению к активным красителям имеет большое практическое значение, так как благодаря этому их можно применять в качестве загустителей в процессах печатания и для крашения на плюсовках. Инертность альгинатов объясняют тем, что отрицательный заряд карбоксильного аниона препятствует адсорбции анионов красителя 53  [c.248]

    Сравнение с реакцией того же красителя с сорбитом, проходящей в гомогенной среде, показало, что скорость гетерогенной реакции красителя с волокном в 25 раз меньше, чем скорость гомогенного замещения сорбита. Поэтому, принимая во внимание гетерогенный характер реакции крашения, невозможно найти объяснение тому, что активные красители реагируют с целлюлозным волокном в содово-щелочной среде с большим выходом. То,, что подвергающийся крашению субстрат нерастворим в воде, не только не является необходимым условием реакции, но, наоборот, препятствует ей, так как топохимически гетерогенная реакция с целлюлозой затруднена [70]. Степень этого топохимического торможения реакции, как оказалось, зависит не только от субстрата, но и от специфических свойств красителя. Число ОН-групп. в целлюлозном волокне ограничено, а в процессе фиксации оно еще снижается в связи с тем, что адсорбция красителя проходит с большей скоростью, чем та, которая соответствует степени замещения. Это объясняется пространственными затруднениями связанными с большим объемом молекулы красителя. Следовательно, удельное насыщение волокна красителем тем ниже, чем больше молекулы красителя и выше его субстантивность [137]. Так как степень насыщения зависит от возможности проникновения красителя вглубь волокна, то она должна зависеть и от способа фиксации. При этом следует учесть, что чем меньше набухание волокна во время фиксации тем ниже будет насыщение. Чем ближе к пределу насыщения, тем медленнее идет реакция фиксации и выход падает. Хотя глубина цвета на практике не достигает предела насыщения, признаками насыщенности волокна могут служить снижение скорости фиксации и падение выхода (которые [c.283]

    В сочетании с соединением I вводились р-пафтол или дпметилани-лип. Оптические изомеры р-нафтолового красителя адсорбировались на волокнах шерсти в равной степени, тогда как в случае диметиланилиповых красителей адсорбция протекала асимметрически. [c.37]


Смотреть страницы где упоминается термин Красители адсорбция на волокнах: [c.56]    [c.61]    [c.282]    [c.137]    [c.58]    [c.288]    [c.298]    [c.1480]    [c.1480]   
Общая химическая технология органических веществ (1966) -- [ c.300 , c.305 , c.316 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция красителей



© 2025 chem21.info Реклама на сайте