Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Различные актиноиды

    РАЗЛИЧНЫЕ АКТИНОИДЫ Торий — кюрий [c.195]

    Несмотря на неустойчивость атомов актиноидов, первые семь элементов этого семейства получаются в значительных количествах в свободном состоянии и в виде различных соединений — оксидов, галогенидов и др. [c.644]

    Торий, протактиний и уран встречаются в природе (Ра в очень малых количествах). Остальные актиноиды были получены искусственно с иомощью различных ядерных превращений . Наибольший вклад в синтез заурановых элементов внесен двумя большими группами исследователей, работающими в г. Беркли (Калифорния, США) под руководством Г. Сиборга и в г. Дубне (СССР) под руководством акад. Г. Н. Флерова. [c.607]


    ХРОМАТОГРАФИЯ — метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Хроматографические сорбционные, методы различаются по следующим. признакам по средам, в которых производится разделение (газовая, газожидкостная, жидкостная X.) по механизмам разделения (молекулярная, ионообменная, осадочная и распределительная X.) по технике проведения разделения (колоночная, капиллярная, бумажная и тонкослойная X.), Методами X. анализируют смеси неорганических соединеиий, концентрируют следы элементов. В химической т хнологии X. применяют для очистки и разделения различных веществ, близких по свойствам лантаноидов, актиноидов, аминокислот и др. [c.280]

    Актиноиды существуют в форме катионов. Основные виды ионов Э- +, +, ЭОГ и ЭОа . Для Np, Pu и Ат в жестких условиях получены ионы (ЭОз) . Последние нестабильны и существуют в сильнощелочной среде. Общие свойства соединений или ионов различных элементов, находящихся в одинаковой степени окисления, аналогичны. Большинство соединений одинакового типа изоморфны. Оксо-ионы (МОа) и (МОа) имеют весьма прочные связи М—О и в отличие от других оксо-ионов остаются неизменными в ходе химических превращений и ведут себя как катионы, свойства которых промежуточны между свойствами ионов М+ и М +. Способность к образованию одним и тем же элементом разных по составу катионов значительно усложняет химию водных растворов актиноидов. Особенно это касается подгруппы уранидов. Например, у Pu все четыре окислительных состояния могут одновременно сосуществовать в растворе в сравнимых концентрациях. [c.360]

    Как можно было ожидать, аналогичное уменьшение размера ато MOB и ионов происходит и во втором внутреннем переходном ряду, оно было названо актиноидным сжатием (табл. 4-6). Вследствие того что актиноиды проявляют различные степени окисления, их. химическое разделение провести легче, чем в ряду лантаноидов  [c.116]

    КИ. Для актиноидов характерно многообразие степеней окисления и наличие ионов одного и того же элемента, содержащих различное число и /-электронов. [c.220]

    Актиноиды проявляют различную степень окисления от +2 до +6. С увеличением порядкового номера характерная степень окисления вначале повышается от +4 до +6, а затем становится характерной +3, как и у лантаноидов. [c.84]

    Имеются различные точки зрения на структуру электронной оболочки атомов актиноидов, которые будут приведены ниже, в главе об актиноидах. [c.29]


    В определении верхней границы системы, помимо физических проблем, связанных со стабильностью ядер, существуют и химические проблемы, обусловленные строением и энергетикой валентных электронных оболочек. Уже у актиноидов была отмечена конкуренция 5/- и 6< -орбиталей, что приводит к многообразию и сравнимой стабильности различных степеней окисления элементов. [c.451]

    Потенциалы ионизации у атомов лантаноидов изменяются постепенно, несмотря на скачкообразные изменения радиуса атома. Хотя число электронов в подуровне 4[ различно, окислительное число (или степень окисления) почти постоянно и равно -4-3. Радиусы ионов в степени окисления +3, а также кривые изменения атомных радиусов и первых потенциалов ионизации приведены на рис. 171. У актиноидов наблюдаются те же закономерности. [c.320]

    В VII периоде 14 элементов с порядковыми номерами 90—103 составляют семейство актиноидов. Их также помещают отдельно — под лантаноидами, а в соответствующей клетке двумя звездочками указано на последовательность их расположения в системе Ас — Ьг. Однако в отличие от лантаноидов горизонтальная аналогия у актиноидов выражена слабо. Они в своих соединениях проявляют больше различных степеней окисления. Например, степень окисления актиния +3, а урана +3, -Ь4, - -5 и 6. Изучение химических свойств актиноидов крайне сложно вследствие неустойчивости их ядер. [c.38]

    Многие соли актиноидов хорошо растворимы в различных органических растворителях, не смешивающихся с водой. На этом основана экстракция соединений актиноидов органическими веществами из водных растворов. Экстракционные процессы нашли широкое применение в технологии выделения и разделения близких по свойствам актиноидов. [c.452]

    Все актиноиды радиоактивные. Особый род процессов деления ядер различных изотопов урана, плутония, тория и других сопровождается колоссальным выделением энергии, поэтому играет исключительную роль в атомной энергетике. [c.407]

    В VII периоде из 18 элементов 14 с порядковыми номерами 90—103 составляют семейство актиноидов. Они также выписываются отдельно — под лантаноидами, а в клетке актиния двумя звездочками отмечается их положение в системе. Располагаясь в одних и тех же вертикальных колонках, актиноиды сходны с лантаноидами. Однако, в отличие от лантаноидов, горизонтальная аналогия у актиноидов выражена слабо. Они проявляют больше различных степеней окисления. Например, у актиния она равна +3, у урана +3, +4, +5 и +6. Изучение химических свойств актиноидов крайне сложно из-за неустойчивости их ядер. [c.186]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    За последние 20 лет появилось более тысячи публикаций, посвященных кислородсодержащим макроциклическим соединениям. Макроциклические полиэфиры вызвали всеобщий интерес исследователей благодаря способности образовывать координационные соединения с катионами металлов в кристаллическом виде и в растворе. Спектр действия этих лигандов настолько широк, что вопреки принятому мнению о необходимости соответствия жесткости координирующихся частиц они вступают в реакции комплексообразования с представителями самых различных групп металлов — щелочных, щелочноземельных, -переходных, лантаноидов, актиноидов Известны также комплексные соединения краун-эфиров с некоторыми нейтральными молекулами — водой, бромом, органическими растворителями и основаниями, однако в данной книге комплексы такого типа не рассмотрены. Все аспекты возможного практического применения макроциклических полиэфиров — в экстракции, межфазном катализе, аналитической химии, в биологии и медицине, безусловно, связаны с их комплексообразующей способностью. [c.147]


    Семейства элементов — совокупность различных элементов, в атомах которых заселение орбиталей наружных электронных оболочек осуществляется по одинаковому принципу. В соответствии с этим различают 8-, Р-, (1- и /-семейства элементов. См. таюке Актиноиды, Лантаноиды, Металлы, Неметаллы. [c.271]

    Для этого применяют различные жидкости и растворы (их называют элюентами). В опытах было установлено, что для разделения лантаноидов пригодны в качестве элюентов соляная кислота и цитрат аммония. Эти же вещества решили использовать при разделении актиноидов ведь актиноиды и лантаноиды — химические аналоги. [c.435]

    Расчеты оправдались. Благодаря неодинаковой прочности сцепления различных ионов с катионитом, в первых каплях элюента, выходящ,его из колонки, содержался только самый тяжелый элемент смеси, в последующ,пх — второй, чуть более легкий, и так до последнего, самого легкого. Чтобы элементы снова не смешались, каждую каплю раствора принимали на отдельный платиновый диск и тут же отправляли в другое помещение, где с помощью специальных приборов определяли радиоактивные свойства элемента, принесенного в этой капле. Если по химическим свойствам актиноиды — почти двойники, то по радиоактивным они вполне индивидуальны. [c.435]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Как известно, соединения различных актиноидов, находящихся в одном и том же валентном состоянии, сходны по химическим -свойствам. В связи с этим ниже дается характеристика, систематизированная по валентным состояниям. Необходимо учесть, что наиболее устойчивые валентности актиноидов возрастают от трех для актиния до шести для урана устойчивость высших валент-иостеи трансурановых элементов падает слева направо поэтому [c.679]

    Близость энергий 5/- и 6 -элeктpoнoв атомов актиноидов. объясняет сход- ство свойств первых элементов семейства актиноидов с -элементами, Так, хотя г строение внешних электронных оболочек невозбужденных атомов урана и воль-I фрама различны [c.496]

    Основным достоинством хроматографии является универсальность метода он пригоден для разделения практически любых веществ. Увеличение толщины слоя адсорбента (высоты хроматографической колонки) позволяет обеспечить высокую степень разделения даже близких по свойствам веществ, ионов. Это значит, что степень разделения можно регулировать. Метод пригоден для работы с макроколичествами и с мнкроколичествами веществ. Хроматографический метод разделения веществ легко поддается автоматизации. Эти достоинства обеспечили широкое прнмепенио хроматографии в производстве и научных исследованиях. В промышленности хроматографию применяют для получения высоко-чистых веществ (редкоземельных элементов, актиноидов и др.). Хроматография широко используется как метод физико-химического исследования. С ее помощью можно изучать термодинамику сорбции, определять молекулярные массы веществ, коэффициенты диффузии, давление паров веществ, удельные поверхности адсорбентов и катализаторов и т. д. Широкое применение хроматография получила в аналитическом контроле различных смесей веществ. Важным преимуществом хроматографии является быстрота и надежность проведения анализа, [c.176]

    ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ (за-урановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в конце периодической системы элементов Д. И. Менделеева. Т. э. имеют п. н. 93—103, принадлежат к группе актиноидов. Все изотопы Т. э. обладают периодами полураспада, значительно меньшими, чем возраст Земли, поэтому они отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Исследование физических свойств Т. э. показало, что они аналоги лантаноидов. Из всех Т. э. наибольшее значение имеет зврц как ядерное топливо, используется в изотопных источниках тока, применяемых для питания радиоаппаратуры на спутниках и др. [c.253]

    Среди актиноидов с порядковыми номерами от 90 до 103 не имеется ни одного устойчивого изотопа все они радиоактивны. Число радиоактивных изотопов у каждого элемента различно. Наиболее устойчивыми являются (7 1/2=1,4-10 лет) 238 (7, 2=4,5.10 лет) Мр (Г,/2 =2,2-10 лет) 239рц =2,4-10 лет). Об использовании изо- [c.58]

    Поэтому его приходится защищать от контакта с водой в ядерных реакторах в тех случаях, когда вода используется для теплоотвода. Лантаноиды и актиноиды реагируют с галогенами, серой, азотом, фосфором, углеродом и др. Их оксиды активно соединяются с водой, в[з1деляя значительное количество тепла. Уран образует ряд оксидов ио, иОа, зОв и иОз. Известны различные соли уранила иОз , который играет в них роль двухвалентного металла, например иОаЗО , [c.328]

    Строение атома и химические свойства элементов. Осн. особенности хнм. поведения элементов определяются характером конфигураций внешних (одной-двух) электронных оболочек атомов. Эти особеииостн различны для элементов подгрупп а (л- н р-элементов), подгрупп б ( -элементы), /-семейств (лантаноиды и актиноиды). [c.484]

    Трансурановые элементы (заурановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в периодической системе Д. И. Менделеева. Атомные номера 93. Большинство известных трансурановых элементов (93—103) принадлежит к числу актиноидов. Все изотопы их имеют период полураспада значительно меньший, чем возраст Земли. Поэтому Т. э. практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Ри, п. н. 94), америция (Ага, п. н. 95), кюрия (Сга, п. н. 96), берклия (Вк, п. н. 97), калифорния( f, п. н. 98), эйнштейния (Es, п. н. 99), фермия (Рш, п.н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102), лоуренсия (Lr, п. н. 103) и курчатовия (Ки, п. н. 104). Так же получены Т. э.с порядковым номером 105— 106. Более или менее полно изучены химические свойства Т. э. Криста.члографи-ческне исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств Т. э. показали, что элементы с п. н. 93—103 — аналоги лантаноидов. Из всех Т. э. наибольшее применение нашел Ри как ядерное горючее. [c.138]

    Газ для создания защитной атмосферы выбирают в зависимости от металлов, входящих в состав сплава. Часто применяют водород, однако не в тех случаях, когда присутствуют значительные количества щелочных, щелочноземельных и редкоземельных металлов, легко образующих гидриды. Применяют для этой цели и азот, за исключением тех случаев, когда среди металлов-присутствуют такие, которые образуют нитриды, как, например, литий, бериллий, магний, кальций, стронций, барий, редкоземельные металлы, актиноиды,, титан, цирконий, гафний, ванадий, ниобий и тантал. Если нет основания опасаться образования карбидов, то можно с успехом использовать и моноксид углерода, тогда как Oj и SOj при высоких температурах могут иногда оказывать на металлы окислительное действие. Инертные газы, преимущественно аргон, являются наилучшими, хотя и наиболее дорогими защитными газами. Защитный газ при высоких требованиях к его защитному действию должен быть хорошо очнщен, в особенности нежелательно присутствие в нем кислорода, даже в виде следов. Указания о способах очистки различных газов можио найти в соответствующих разделах настоящей книги [водород (гл. 1), азог (гл. 7), инертные газы]. Водород, азот и аргон высокой степени чистоты имеются в продаже или могут быть поставлены некоторыми заводами по желанию заказчика. [c.2147]

    Известны также краун-комплексы актиноидов, Були выделены различные комплексы краун-эфиров или криптандов с и " , иОз и ТЬ и установлена их структура. Состав зтих комплексов приведен в табл. 3.6. [c.116]

    Кислородсодержащие экстрагенты, имеющие кислотные группы, часто называют жидкими катионообменниками. Из широко распространенных кислотных экстрагентов наибольшей селективностью при экстракции катионных форм элементов обладают фосфорорганические кислоты. Существенные различия в экстрагируемости в данном случае проявляются как для катионов с различной величиной заряда, так и для катионов, отличающихся только размерами ионных радиусов. Например, типичный экстрагент этого класса ди-2-этилгексилортофософорная кислота (Д2ЭГФК) обеспечивает возможность разделения таких близких по химическим свойствам элементов, как лантаноиды и актиноиды. Среднее значение для соседней пары этих элементов превышает 2. Селективность экстракции карбоновыми кислотами значительно ниже, поэтому в общем случае их применение более оправдано для суммарного концентрирования катионных форм элементов, чем для их разделения. Подробные сведения о кислотных экстрагентах и их свойствах можно найти в работе [39]. Данные по экстракции элементов из солянокислых растворов Д2ЭГФК приведены в [1]. [c.161]

    Возьмите любое из последних изданий таблицы Менделеева в них неизменно лаптаноиды и актиноиды вынесены в самостоятельные строки. Аналогия химических свойств этих элементов в трехвалентном состоянии легла в основу актиноидной теории. Эта теория принесла химии большую пользу. Ио многие химики не считали и не считают ее всеобъемлющей, основополагающей. Известные экспериментальные факты, такие, например, как существование урана, нептуния, плутония и других элементов в различных валентных состояниях, эта теория объяснить [c.388]

    Полученные в результате переработки облученного ядерного горючего актиноиды представляют собой смесь различных нуклидов. Критические параметры сильно зависят от нуклидного состава делящегося вещества. Так как химическим путем можно вьвделить только смесь изотопов какого-либо элемента, практически важной становится оценка влияния на критические параметры соотнощения изотопов. [c.236]


Смотреть страницы где упоминается термин Различные актиноиды: [c.365]    [c.170]    [c.457]    [c.92]    [c.215]    [c.618]    [c.385]    [c.4]    [c.618]   
Смотреть главы в:

Справочник по экстракции -> Различные актиноиды

Экстракция нейтральными органическими соединениями -> Различные актиноиды




ПОИСК





Смотрите так же термины и статьи:

Актиноиды



© 2024 chem21.info Реклама на сайте