Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы индикации

    Для кулонометрического титрования в качестве электролизера применяют ячейку (рис. 2.34), состоящую из двух изолированных камер, а при инструментальном методе индикации — из трех камер. Одна из них — генерационная I — представляет собой стеклянный сосуд с пришлифованной крышкой, в отверстие которой вставляют электроды и один конец электролитического ключа (соединительный мостик — U-образная стеклянная трубка, наполненная соответствующим раствором электролита), который обеспечивает электрический контакт между двумя камерами. Вторая электродная камера И — обычный стакан с раствором индифферентного электролита, в который помещают вспомогательный электрод и второй конец соединительного мостика. В третью электродную камеру П1, заполненную насыщенным раствором КС1, помещают электрод сравнения. Если необходимо провести анализ в инертной атмосфере, через исследуе- [c.164]


    Осадительное титрование. Большое число реакций осаждения нельзя использовать в классическом титриметрическом анализе, что связано с отсутствием подходящих индикаторов для надежного определения конечной точки титрования. В этом случае наряду с другими электрохимическими методами индикации хорошие результаты дает применение кондуктометрии. [c.326]

    Среди титриметрических методов, основанных на реакциях комплексообразования, наибольшее значение имеют реакции с применением комплексонов. Устойчивые координационные соединения с комплексонами образуют почти все катионы, поэтому методы комплексонометрии универсальны и применимы к анализу широкого круга разнообразных объектов. Рабочие растворы устойчивы. Для установления точки эквивалентности имеется набор цветных индикаторов и разработаны физико-химические методы индикации потенциометрические, амперометрические, фотометрические, термометрические и др. Точность титриметрических определений составляет 0,2...0,3%. Методы комплексонометрического титрования непрерывно совершенствуются. Синтезируются новые типы комплексонов, обладающих повышенной селективностью, и новые индикаторы. Расширяются области применения комплексонометрии. [c.245]

    Индикационный блок в зависимости от используемого инструментального метода индикации конечной точки титрования включает соответствующую установку 7. В случае применения потенциометрии или амперометрии индикаторные электроды 8 вставляют в генерационную камеру. [c.164]

    Для исключения ошибки, связанной, в основном, с присутствием в растворе СОг, проводят также предэлектролиз фонового раствора. Для этого в ячейку вносят раствор фона и фенолфталеина, доводят объем до 20 мл дистиллированной водой и титруют до изменения окраски индикатора. Повторяют опыт с новыми порциями раствора фона несколько раз и вычисляют среднее значение времени предэлектролиза. При расчете время, затраченное на предэлектролиз фона, вычитают иЗ времени, затраченного на титрование кислоты в этом фоне. Повторяют определение с новыми аликвотными порциями раствора, используя потенциометрический метод индикации конечной точки титрования. При этом поступают согласно описанию в разд. 2.6.1. [c.168]

    В методах активационного анализа и изотопного разбавления явление радиоактивности используют непосредственно для определения веществ. Кроме того, существует еще одна область использования радиоактивных изотопов — применение их для индикации точки эквивалентности при титровании. Метод радиометрического титрования впервые был применен в 1941 г. В ходе титрования измеряют радиоактивность раствора. Точку эквивалентности можно определить так же, как, например, в методе кондуктометрического титрования, по пересечению двух прямых. Существенным преимуществом радиометрического титрования по сравнению с другими методами индикации точки эквивалентности является тот факт, что численное значение измеряемого свойства может быть любым и достаточно большим даже при очень малых концентрациях благодаря введению в [c.390]


    Авторы считают, что метод индикации бромидом кобальта некорректен и может быть использован лишь как качественный. Метод точки росы, в соответствии с которым пары пропана направляют на полированную поверхность охлаждаемого зеркала, не всегда позволяет наблюдать воду. Помимо этого он часто осложняется присутствием конденсирующихся углеводородов тяжелых [c.92]

    Другие методы индикации к.т.т. [c.139]

    В ходе кондуктометрического титрования происходит замещение конов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, электропроводность которых больше или меньше электропроводности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. После точки эквивалентности титрант уже не расходуется, поэтому обычно получают восходящие прямые, угол подъема которых зависит от электропроводности титранта. Точность индикации точки эквивалентности определяется углом пересечения прямых он должен быть возможно более острым, тогда точность определения достигает 0,3%. Обычная же точность метода до 1%. Наиболее острый угол пересечения прямых получается при кислотно-основном кондуктомет-рическом титровании, так как ионы Н+ и 0Н вносят особенно большой вклад в электропроводность раствора (см. табл. Д.21). Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять многие реакции осаждения и некоторые реакции комплексообразования. В принципе кондуктометрия годится и для индикации точки эквивалентности в окислительно-восстановительном титровании, если оно сопровождается изменением концентрации ионов НзО+. Но все же лучшие результаты дают в зтом случае другие методы индикации. [c.324]

    В кулонометрическом анализе требуются два рабочих электрода. Тот, на котором протекает необходимая электрохимическая реакция, называется генераторным (или рабочим), а второй — вспомогательным. Кроме того, для потенциостатической кулонометрии требуется электрод сравнения, относительно которого контролируется потенциал генераторного электрода. При кулонометрическом титровании, если применяются электрохимические методы индикации завершения химических реакций, следует дополнительно располагать соответствующими индикаторными электродами (см. гл. И, П1). [c.208]

    В описанных методах термогравиметрии и дифференциального термического анализа масса или температура исследуемой системы исследовалась как функция температуры среды. В отличие от этого в методе термометрического титрования изучают зависимость температуры анализируемой системы от объема добавляемого титранта. Таким образом, два первых метода являются методами определения, последний — методом индикации точки эквивалентности. [c.401]

    По завершении химической реакции в растворе снова появятся Н + -ионы уже ничем не связываемые, что можно определить соответствующими методами индикации конечной точки. Сказанное относительно израсходованного количества электричества и вычисления содержания НгУ справедливо ы для данного случая. Кривые i = /( ) для этих реакций схематически показаны на рис, 71. [c.205]

    Физико-химические методы индикации [c.73]

    Появление после окончания этой реакции избытка ОН" можно обнаружить любыми методами индикации pH растворов (например, с помощью кислотно-основного индикатора, рН-метром и другими способами). Так как растворенная двуокись углерода титруется в этих условиях, искажая результаты анализа, следует предварительно удалить ее. [c.206]

    При использовании электрохимических, фотометрических или радио-метрических методов индикации момента завершения химической реакции следует иметь соответствующие установки (см. гл. И, П1. V, VII, IX). [c.215]

    В фотометрическом методе индикации генерационной камерой служит приспособленная для этой цели кювета, помещенная в спектрофотометр таким образом, чтобы мешалка, генераторный электрод и колена электролитического ключа, создающего контакт с другой кюветой со вспомогательным электродом, не рассеивали проходящий через кювету свет. [c.216]

    Визуальное определение конечной точки титрования возможно не всегда — иногда из-за отсутствия пригодного индикатора, иногда вследствие неполного протекания реакции между титруемым веществом и титрантом. В таких случаях несомненными преимуществами обладают физико-химические методы индикации. Кроме того, они находят все более широкое применение потому, что некоторые нз них можно полностью автоматизировать. [c.73]

    В отличие от визуальной индикации в физико-химических методах индикации необходимы большие расходы на аппаратуру. Важнейшими используемыми таким образом свойствами системы титруемое вещество — титрант являются поглощение электромагнитного излучения (в видимой и УФ-областях), энтальпия реакции (ср. стр. 87), радиоактивность, электропроводность (ср. стр. 164), а также диффузионный ток (ср. стр. 137). [c.74]


    В разделе 3.5 уже рассматривались методы, пригодные для измерения турбулентности. Было показано, что в общем случае к любой системе применим метод индикации диффузии. По-видимому, нет причин, препятствующих применению такого метода при исследовании потока вблизи стенки. Эккерт провёл подобное исследование в однофазном потоке [97], а в работе [98] вблизи стенки осуществлялось инжектирование как газа, так и частиц. [c.133]

    Позднее измерения в воде [127] показали, что существует хорошая корреляция между параметром потока кинетической энергии Е и данными по началу перехода к турбулентности, полученными с использованием других методов индикации. Оказалось, что положение точки, в котором становятся заметными пульсации температуры, либо наблюдается отклонение от ламинарного профиля средней температуры, либо температура поверхности, нагреваемой тепловым потоком постоянной плотности, достигает максимума, определяется постоянными значениями Е, равными =17,5, = 19,2 и = 22,7 соответственно. В зависимости от выбранного критерия перехода к одному из этих значений параметра близка его величина, рассчитанная по экспериментальным данным для воды, полученным некоторыми другими исследователями. [c.52]

    Модификация метода, в к-рой используется рассеянное излучение, позволяет получать информацию о диспергированной воде в эмульсиях. Для контроля влажности твердых материалов используют метод индикации отраженного излучения (погрешность 5-10%). Достоинства В. широкий диапазон определяемых концентраций (шкалы 0-0,5% и 0-80%), возможность бесконтактного измерения влажности материалов, движущихся на конвейере (напр., минер, удобрений), высокое быстродействие. Недостаток дополнит. погрешность, обусловленная возможной неоднородностью концентрационного поля при измерении содержания влаги в поверхностном слое материала. [c.390]

    Из приведенных данных видно, что знание закономерностей, связывающих канцерогенность высокомолекулярных полициклических конденсированных ароматических углеводородов с их строением, даст в руки человека мощные химические средства в борьбе за снижение канцерогенности продуктов, вырабатываемых в ряде отраслей химикотехнологических производств, в том числе и на нефтеперерабатывающих заводах, и откроет новые пути устранения возможности воздействия на людей, занятых на этих предприятиях, канцерогенно-активных веществ. В борьбе за сокращение случаев раковых заболеваний в результате длительного воздействия на кожный покров человека канце-рогенно-активных химических веществ процессам каталитического гидрирования и окисления, как химическим методам дезактивации канцерогенности, принадлежит большое будущее. Дальнейшее систематическое и глубокое изучение связи канцерогенности веществ с их строением на примерах индивидуальных высокомолекулярных углеводородов и их производных позволит использовать канцерогенность как метод индикации на наличие определенных структурных элементов в молекуле. [c.292]

    Важной задачей аналитической химии является нахождение новых методов установления конца титрования, поскольку с этим связано расширение типов реакций, применяемых в объемном анализе. Тенденция развития направлена в сторону физических методов индикации, которые в отличие от химических не вносят изменений в аналитическую систему и тем самым обусловливают принципиально большую точность индикации. Кроме того, это способствует автоматизации титриметрических определений, что имеет большое значение для химической промышленности. Однако наиболее пригодны для автоматизации методы, не связанные с измерением объемов, например метод меченых атомов, измерение УФ- и ИК-поглощения, УФ- и рент-геноэмиссионный спектральный анализ. [c.120]

    Другие методы индикации. Наряду с перечисленными методами конечную точку комплексонометрического титрования можно определить также фотометрическими методами, измеряя оптическую плотность раствора. При 225 нм ионы НХ и Х ЭДТА сильно поглощают свет, а комплексы при этой длине волны бесцветны. [c.187]

    Особенно эффективен амперометрический метод индикации конечной точки титрования. Потенциометрическую индикацию можно проводить следующими способами а) применяя индикаторный электрод, специфичный к определяемому иону, например А +/Ай б) с помощью платинового электрода в случае обратимой редокс-пары, например Ре(П)/Ре(П1) в) применяя электрохимическую систему ЭДТА — Н (П) —Нд, для которой [c.188]

    В этом варианте метода точку эквивалентности можно определить с помощью обычных индикаторов. Вместо индикаторов, которые могут разлагаться при электролизе, лучше использовать электрические методы индикации — потенциомет- рию или амперометрию. Эти методы дают возможность использовать хронометр, который автоматически включается (с помощью электроуправляемого реле) одновременно с началом пропускания тока при электролизе. Силу тока и время необходимо определять очеяь точно. Точность анализа существенно зависит от правильности установления точки эквивалентности. [c.274]

    В то время как электрогравиметрия, кулонометрия и полярография являются электрохимическими методами определения содержания вещества, амперометрию применяют для определения точки эквивалентности при титровании, т. е. она служит методом индикации. Амперометрия основа.на на тех же явлениях, что и постояннотоковая полярография, поэтому амперометрическое титрование назы1вают также поляриметрическим или титрованием по предельному току. Принцип метода заключается в измерении значения постоянного тока, протекающего /при постоянном напряжении через раствор электролита между электродами, один из которых поляризуемый, а другой — неполяризуемый, как функции поляризационного сопротивления В отличие от амперометрии в кондуктометрии измеряют значение переменного тока как функции сопротивления электролита Яь Метод амперометрии с двумя поляризуемыми электродами называют методом конечной точки ( (1еас1-з1ор ). [c.296]

    Кондуктометрия — это метод электрохимической индикации, в котором для нахождения точки эквивалентности используют шзменение электропроводности в ходе титрования. Поэтому говорят также о титровании по электропроводности. i В отличие от электрохимических величин, используемых в лругих методах индикации, таких, как потенциометрия, амие-рометрия, вольтамперометрия, суммарная электропроводность электролита аддитивно складывается из электропроводности всех находящихся в растворе ионов независимо от того, принимают они участие в реакции или нет. Поэтому кондуктомет-рические измерения отражают не конкретные процессы, происходящие при титровании, а изменения, происходящие в растворе в ходе титрования и связанные с вкладом ионов, участвующих в реакции, в суммарную электропроводность всех ионов, находящихся в растворе. При титровании по электропроводности точность определения тем меньще, чем больше в растворе концентрация посторонних ионов, не участвующих в реакции. Ияаче говоря, наиболее удовлетворительные результаты получаются при титровании растворов с минимальным содержани-<ем посторонних электролитов. [c.318]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    Наиболее часто применяют потенциометрический метод индикации. Используя окислительно-восстановительный или ионселективный электрод (ср. разд. 4.2.1), потенциал можно измерять как логарифмическую функцик> концентрации титруемого вещества или титранта и экспериментальным путем получить такие же кривые, которые были рассмотрены ранее при описании равновесия. Скачок на кривой титрования соответствует его конечной точке. Однако не всегда нужно снимать всю кривую. Во многих случаях достаточно оттитровать анализируемый раствор до заданного конечного потенциала. Потенциал в точке эквивалентности, так называемый потенциал скачка Ей, находят из условия эквивалентности [для этого ср. уравнение (3.1.32)] [c.73]

    По методам индикации спектров эти спектрометры делят на группы 1) индикация на постоянном токе 2) детектирование с последующим усилением на низкой частоте 3) модуляционный метод 4) супергетеродинный метод 5) метод спинового эха. В первом методе, использованном Е. К- Завойским, сверхвысокочастот- [c.210]

    Определение эффективности тока. Для на.хождения условия обеспечения 100%-ной эффективности тока генерации промежуточного реагента изучают кривые зависил[ости = f E) электрода в соответствующих условиях. Однако следует учесть, что не все условия электролиза, обеспечивающие 100%-ныи выход по току, оптимальны для кулонометрического титрования, так как они могут оказаться непригодными для протекания химической реакции в растворе и для того или иного метода индикации конечной точки. Следовательно, ]]еобходпмо обеспечить правильное сочетание условий проведения кулонометрического титрования. [c.201]

    Определение момента завершения кулонометрического титрования. Почти все способы индикации конечной точки реакции, используемые в титриметрических методах анализа, пригодны й при кулонометрическом титровании. Применяются цветные индикаторы (в основном при кислотно-основных и окислительно-восстановительных реакциях), а также ряд инструментальных методов (потенциометрия, кондуктометрия, амперометрия, спектрофотометрия, радиометрия и т. д.). Из них наиболее часто применяют потенциометрию и амперометрию, особенно биамперометрию. Большая концентрация вспомогательного реагента отрицательно сказывается при использовании кондуктометрического метода индикации конечной точки, так как электропроводность является функцией всех ионов в растворе, и поэтому небольшое ее изменение в процессе кулонометрического титрования трудно обнаружить. [c.203]

    В кулонометрическом титровании нет необходимости прекращать электролиз в момент завершения химической реакции (кроме случая применения цветных индикаторов и кулонометров), так как нри использовании различных инструментальных методов индикации конечной точки обычно этот момент устанавливают графически из кривых титрования. Однако в некоторых случаях целесообразно проводить электролиз до достижения заранее установленного значения потенциала индикаторного электрода (при потенциометрическом методе индикащш конечной точки) или до появления или падения индикаторного тока практически до нуля (при амперометрнческой индикации конечной точки). Необходимость в таких приемах возникает при проведении предэлектролиза. [c.216]

    В кулонометрическом титровании используется метод электролитического генерирования (образования) титранта. В этом случае получается картина, похожая на обычное титриметрическое определение, отличаю1дееся тем, что титрант получают в ходе самого титрования. Поэтому такой метод гальваностатической кулонометрии получил название кулонометрического титрования, а электрод, на котором получают (генерируют) титрант, называют генераторным электродом. Для определения конечной точки при кулонометрическом титровании используются потенциометрический, амперометрический, фотометрический или другие методы индикации. [c.56]

    Второй, более распространенный подход к определению качества настройки-это включение радиочастотного зонда между выходом передатчика и датчиком (рис. 3.12). На выходе он дает сигнал, пропорциональный отраженной от датчика энергии, которая зависит от настройки контура н согласования сопротивлений. Обычно отраженный сигнал выводится на стрелочный измеритель, который может быть выполнен как встроенным в спектрометр, так и в виде отдельного блока (в ие очень дорогих спектрометрах). Это более прямой метод индикации согласова- [c.91]

    Можно применять и электрохимические методы индикации, нанример потепциометрию, когда потенциал индикаторного электрода в конечной точке электрохимической реакции приобретает с достаточно резким скачком некоторое значение, называемое смешанным предельным потенциалом. [c.127]


Библиография для Методы индикации: [c.36]   
Смотреть страницы где упоминается термин Методы индикации: [c.216]    [c.100]    [c.165]    [c.204]    [c.67]    [c.64]    [c.92]    [c.57]   
Смотреть главы в:

Техника безопасности работы в химических лабораториях -> Методы индикации

Химия травляющих веществ Том 2 -> Методы индикации




ПОИСК





Смотрите так же термины и статьи:

Брагинский. Биологические тесты как метод индикации токсичности водной среды

ДВА ЯДЕРНЫХ МЕТОДА ИНДИКАЦИИ Радиоактивные изотопы как индикаторы

Другие методы индикации

Другие методы индикации иприта

Индикация биохимическими методами

Индикация и методы количественного определения некоторых ядовитых, вредных, огнеопасных и взрывоопасных веществ

Индикация физическими методами

Инструментальные методы индикации точки эквивалентности

Иодиметрические методы анализа амперометрическая индикация конечной точки

Конечная точка, методы индикации

Метод цветной индикации

Методы индикации и оценки воздействия магнитного поля на водно-дисперсные системы

ОБЩИЕ СВЕДЕНИЯ О РЕАКТИВАХ ДЛЯ ТИТРОВАНИЯ, ИНДИКАТОРАХ И ИНСТРУМЕНТАЛЬНЫХ МЕТОДАХ ИНДИКАЦИИ ТОЧКИ ЭКВИВАЛЕНТНОСТИ Титрование растворами комплексообразующих веществ

Общие замечания. Методы наблюдения индикаций

Общие замечания. Методы регистрации индикаций капиллярного контроля

Объемный метод с биамперометрической индикацией точки эквивалентности

Специфические методы индикации

Титриметрические методы с визуальной индикацией точки стехиометричности

Титриметрические методы с физико-химической индикацией точки стехиометричности

Физико-химические методы индикации



© 2024 chem21.info Реклама на сайте