Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы структура

    Полиатомные фенолы также образуют с формальдегидом полимерные соединения. Скорость реакции поликонденсации возрастает с увеличением количества гидроксильных групп в молекуле фенола. Структура полимеров и их свойства зависят от взаимного расположения этих групп в феноле . Если гидроксильные группы находятся в мета-положении [c.380]


    Некоторые из меченых реагентов, используемых для определения гидроксильных групп алифатических соединений, применимы и для определения фенолов, структура которых не имеет пространственных затруднений, препятствующих их этерификации. [c.83]

    Ароматическое ядро фенола Структуры  [c.194]

    Скорость реакции поликонденсации полиатомных фенолов с формальдегидом возрастает с увеличением числа гидроксильных групп в молекуле фенола. Структура полимеров и их свойства зависят от взаимного расположения этих групп в феноле. Если [c.439]

    В структуре мощностей селективной очистки масел за рубежом, особенно в США, преобладают процессы с использованием ЫМП (-45 %) и фурфурола (-35 %), а в бывшем СССР — главным образом фенола (>70 %). [c.240]

    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]

    Установлены количество и структура КСС. Они представлены кетонами, сульфоксидами, фенолами, ангидридами дикарбоновых кислот, карбазолами (индолами, пиррола-ми) Их характер подтверждает механизм окисления через образование карбоксилатного комплекса, разрушение которого происходит именно с образованием кетонов. Кетоны являются также единственным классом КСС, отсутствую ШИМ в исходном сырье. [c.48]

    Она подвергается различного рода превращениям (например, конденсируется с фенолом или ацетоном), давая целую гамму продуктов. При конденсации окиси мезитила с фенолом получается так называемое соединение Дианина. Дианин изучал эту реакцию в кислой среде при условиях, обычно используемых в синтезе дифенилолпропана, и нашел, что образуется соединение, которому он приписал структуру I. Однако Бэкер , более детально исследовавший это соединение, доказал, что на самом деле оно имеет формулу П и является 2,2,4-триметил-4-(4 -оксифенил)-хроманом  [c.72]


    Можно полагать, что отмеченное выше взаимодействие НрИ-садок в композициях сукцинимида с дитиофосфатом цинка и бис-фенолом является следствием образования водородной связи, что, в свою очередь, приводит к изменению структуры мицелл сукцинимида, оказывающих решающее влияние на эффективность солюбилизирующего действия. [c.185]

    Рассмотрим ингибиторы по величинам f. Величины / для алкилфенолов зависят от структуры соединений и находятся в пределах 2—6,1. Для ионола f=2. С увеличением числа ОН-групп в молекулах фенолов / увеличивается, но в расчете на одну ОН-группу для пространственно затрудненных фенолов величина f составляет 1,5—2. [c.158]

    Для большей части аминофенолов, так же, как и для фенолов, существует корреляция между коэффициентами К и /. Однако для ряда ингибиторов подобной корреляции нет. Например, ингибитор 15 по величине / должен быть на уровне ионола, однако по К он оказался более эффективным. Наличие подобных отклонений объясняется, по-видимому, особенностями структуры ингибиторов и разными условиями проведения экспериментов. [c.176]

    Одним из условий эффективности селективной очистки масляного сырья является не только четкость отделения парафино-нафтеновых углеводородов от ароматических и смол, но и избирательность растворителя по отношению к ароматическим углеводородам разной структуры. На основании данных [7—9] по избирательной способности к ароматической части сырья, включающей углеводороды разной степени цикличности, исследованные растворители располагаются в следующий убывающий ряд нитробензол >фурфурол> фенол. По отношению к группам компонентов фенол более избирателен, чем фурфурол, т. е. при экстракции фурфуролом парафино-нафтеновая часть менее четко отделяется от ароматической. Это объясняется тем, что избирательная способность растворителя к ароматическим углеводородам разной структуры обусловлена значением дипольного момента молекул растворителя (фурфурол имеет больший дипольный момент, чем фенол), в то время как избирательность к группам компонентов нефтяного сырья определяется КТР сырья в растворителе (для фенола эта температура ниже). [c.60]

    Очистка парными растворителями. Экономическая эффективность производства смазочных масел значительно повышается при комбинировании процессов на одной установке. При производстве остаточных масел применяется очистка парными растворителями (дуосол-процесс), которая сочетает деасфальтизацию пропаном и селективную очистку смесью крезолов и фенола (селекто). Эти растворители обладают ограниченной взаимной растворимостью и разной избирательностью к одним и тем же компонентам сырья, что является следствием структуры их молекул. Пропан вследствие дисперсионных сил взаимодействия молекул хорошо растворяет высокоиндексные неполярные или слабополярные углеводороды остаточного сырья, высаживая из раствора асфальтены, смолы и полициклические ароматические углеводороды, которые растворяются в смеси крезолов и фенола в результате совместного действия полярных и дисперсионных сил. Крезол обладает высокой растворяющей способностью по отношению к ароматическим угле- [c.103]

    Смолы, содержащиеся в масляных фракциях нефти, неоднородны по структуре молекул. В их молекулах содержатся как нафтеновые, так и ароматические структуры, парафиновые цепи разных длины и степени разветвленности и атомы 5, О и N. При помощи фенола смолы можно разделить на растворимые и нерастворимые в нем [6]. В молекулах смол, не растворимых в феноле, содержатся длинные алкильные цепи, экранирующие циклические структуры и гетероатомы. Смолы, не растворимые в феноле, при совместной кристаллизации с парафиновыми углеводородами изменяют структуру кристаллов последних (рис. 40, а). Это объясняется ориентацией боковых цепей молекул смол и самой цепочки -парафина так, что полярные группы смол направлены наружу. В результате получаются крупные кристаллы неправильной формы. Поскольку полярность этих смол недостаточно велика, они не могут вызывать агломерацию кристаллов. В то же время, увеличение концентрации смол в растворе приводит к блокировке растущих центров кристаллов, затрудняя диффузию к ним молекул твердых углеводородов, что ведет к уменьшению размеров кристаллов. [c.134]

    Смолы, растворимые в феноле и не содержащие длинных боковых цепей, не могут встраиваться в кристаллическую решетку парафина. Однако, обладая высокой полярностью, эти смолы адсорбируются на кристаллах парафина, вызывая их агломерацию, но не меняя их структуру (рис. 40, б). Адсорбируясь на кристаллах твердых углеводородов, смолы такой структуры вызывают поверхностные перенапряжения, усиливающиеся в связи с одновременным ростом и сжатием кристаллов из-за снижения темпе- [c.134]

    В модификации активности катализаторов могут играть роль и физические факторы. Среди них первостепенную роль играет величина поверхности. Так, при сравнении в реакции гидрирования фенола различных образцов WS2, освобожденных от физических загрязнений (в том числе от механически увлеченной избыточной серы) прокаливанием в вакууме, показано что активность катализатора была прямо пропорциональна его удельной поверхности. Следовательно, развитая поверхность — обязательное условие получения активного катализатора. В ходе эксплуатации поверхность катализатора уменьшается за счет упорядочения кристаллической структуры и образования углистых отложений. Считают что упорядочение кристаллической структуры протекает не вследствие перехода из моноклинной в гексагональную систему, как полагали ранее так как все образцы катализаторов независимо от отношений S W состояли из одной фазы с одинаковыми порядками решетки. Свежий катализатор представляет собой небольшие тонкие пакеты, образованные беспорядочно смещенными по отношению друг к другу слоями WSg. Упорядочение при кратковременном нагревании происходит только при температуре выше 700 °С. При этом быстро уменьшается удельная поверхность в основном за счет пор радиусом 20—80 А. По этой же причине уменьшается и поверхность ката- [c.272]


    Многие высокомолекулярные соединения в основном состоят из линейных молекул. Но другие, например некоторые феноло-форм-альдегидные смолы, представляют собой пространственные трехмерные структуры. [c.159]

    В случае образования прочных валентных связей между цепями всегда в той или другой степени изменяется эластичность материала и повыщается его твердость. Это происходит, например, при твердении феноло-формальдегидных смол или при вулканизации каучука , В предельном случае при образовании сплошной пространственной структуры материал приобретает свойства упруго-твердого (непластичного) тела, примером чего может служить эбонит. [c.568]

    Многоатомные фенолы также образуют с формальдегидом полимерные соединения.Скорость полпконденса-ции возрастает с увеличением количества гидроксильных групп в молекуле фенола структура полимеров и их свойства зависят от взаимного расположения этих групп. Если опи расположены в и<( та-положепии (резорцин, флороглюцин), может образоваться трехмерный полимер с густой сеткой. Если же гидроксильные группы находятся в о- или п-положении, получаются только линейные полимеры. Трехатомные фенолы, в молекулах к-рых гидроксильные группы находятся в о- и д-положениях, не реагируют с формальдегидом. [c.469]

    Обычно при ароматическом замещении атакующий атом или группа (например, ЫОг, ЗОзН, диазониевая группа, а также С1, который при хлорировании в ядро содержит всего щесть электронов, в то время как второй атом хлора, образующийся из молекулы СЬ, содержит полный октет и уходит в виде иона) являются ищущими электроны электрофильными, катионоидными) и становятся в положение с более высоким содержанием электронов. Так, в феноле структуры (УП1А, В и С) являются значительными в резонансе, в результате чего возрастает электронная плотность в о- и -положениях гидроксильная группа в феноле является о- и п-направляю-щей. В фенолят-ионе [c.389]

    Основная часть кислорода нефтей входит в состав асфальто — смолистых веществ и только около 10 % его приходится на долю 1 ислых (нефтяные кислоты и фенолы) и нейтральных (сложные >фиры, кетоны) кислородсодержащих соединений. Они сосредоточены преимущественно в высококипящих фракциях. Нефтяные кислоты (С Н СООН) представлены в основном циклопентан— и циклогексанкарбоновыми (нафтеновыми) кислотами и кислотами смешанной нафтеноароматической структуры. Из нефтяных фенолов идентифицированы фенол (С Н ОН), крезол (СНзС Н ОН), ксиленолы ((СНз)2С ,НдОН) и их производные. [c.74]

    В бензиновых фракциях нефтей встречаются в малых количествах только алифатические кислоты нормального и слабораз — ветвленного строения. По мере повышения температуры кипения их фракций в них появл5[ются алифатические кислоты сильноразвет — пленной структуры, например, изопреноидного типа, а также нафтеновые кислоты. Последние составляют основную долю (до 90 %) от всех кислородсодержа[цих соединеиий в средних и масляных фракциях. Наиболее богаты ими Бакинские, Грозненские, Эмбен — ские. Сахалинские и Бориславские нефти (содержание их достигает до 1,7 % масс.). Содержание фенолов в нефтях незначительно (до 0,1 % масс.). [c.74]

    На большом числе примеров показано, что эффективность смесей противоокислительных присадок очень сильно меняется в зависимости от структуры фенольной присадки (рис. 2.23— 2.25) и относительно мало зависит от характера фосфонатной. Показано также, что замена в бисфенолах группы СНг на 8 резко усиливала противоокислительную активность соединения (см. рис. 2.24), хотя и сохраняла ту же последовательность роли алкильных цепей. В результате проведенных исследований установлено, что дизамещенные фенолы активнее монозамещенных, бисфенолы примерно в два раза эффективнее дизамещенных, а бисфенолы с атомом 8 в мостичной связи более чем в два раза эффективнее обычных бисфенолов, у которых алкилфеноль-ные группировки соединены группой СНг. [c.97]

    При сочетании сукцинимида с дитиофосфатами цинка возможен синергический эффект солюбилизирующего действия. Особенно заметен этот синергизм при сочетании сукцинимида с ди-н-алкилдитиофосфат ом цинка (рис. 4.9). Синергизм солюбилизации отмечается также при сочетании сукцинимида с бис-фенолами. Наличие синергизма связывают с взаимодействием между компонентами смеси, в результате которого мицеллы сукцинимидов видоизменяют свою структуру. В частности, сочетание бисфенолов с сукцинимидом приводит к образованию водородной связи НО - - - НЫ [229]. [c.215]

    Уитекер [159] нашел, что молекулярная структура полиалкилфе-нолов определяет (в связи со стерическими препятствиями), какие продукты могут быть получены прямым гидрированием при отсутствии деструкции. Этот ряд соединений идет от полностью насыщенных цикло-гексанолов к ненасыщенным циклогексанонам, когда в реакцию вводится лишь 1 моль водорода. Фенолы не могут быть частично восстановлены. Добавлением 2 или 3 молей водорода можно замедлить процесс гидрирования. Особенно большое препятствие может быть достигнуто путем добавления 1 или 2 молей, но не 3. [c.464]

    Продукт, полученный по второму уравнению, изомеризуется в карбинол (СНз)2С(ОН)—СвН40Н, а продукт, образующийся по третьей реакции, изомеризуется в дифенилолпропан. Однако ни самим Дианиным, ни при последующих исследованиях кетали не были обнаружены. Кроме того, механизм, предложенный Дианиным, не согласуется с тем, что реакция замещения в фенолах протекает путем прямого замещения атомов водорода в бензольном кольце . Тем не менее Дианин, проводя синтез дифенилолпропана при соотношении фенола к ацетону 1 1, выделил промежуточное соединение, которое при добавлении избытка фенола в присутствии дымящей соляной кислоты давало дифенилолпропан. Структура этого соединения Дианиным не была установлена, но его наличие говорит в пользу двухступенчатого механизма образования дифенилолпропана, хотя и не через кетали. [c.80]

    Катионит КУ-1 получают сульфированием фенола олеумом или серной кислотой и последующей конденсацией образующейся п-фе-нолсульфокислоты с формальдегидом. Структура элементарного звена катионита такова  [c.143]

    Природа промежуточных продуктов, образующихся в определенных условиях, зависит от структуры окисляемых ароматических углеводородов (моноциклические, полициклические, алкиларомати-ческие и др.). Поэтому кроме продуктов, перечисленных выше, можно получить и многие другие соединения, например фенолы, альдегиды, кетоны, хиноны и карбоновые кислоты. [c.169]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]

    Такую огромную разницу в реакционной способности In—Н-и К—Н-связей можно объяснить тем, что переходные состояния PhO- -Н---00R и AriAr2N- -Н- -ООК имеют биполярную структуру, в которой положительно заряженный атом водорода находится между двумя отрицательно заряженными атомами кислорода в случае фенола и между отрицательно заряженными атомами азота и кислорода в случае ароматического амина [171] [c.102]

    Реакция In- с ROOH. Пероксидные радикалы очень быстро реагируют с фенолами и ароматическими аминами. Главная причина этого — полярная структура переходного состояния R02 - -Н---In (см. с. 102). Но именно это и является причиной сравнительно быстрого протекания обратной реакции In. + HOOR -> InH + ROj- — q [c.108]

    В СССР для стабилизации гидрогенизационных топлив применяют 2,6-ди-трет-бутил-4-метилфенол (ионол) в концентрации 0,003—0,004% (масс.). Так как массовая эффективность пространственно затрудненных фенолов (в отличие от мольной) слабо зависит от структуры заместителей и числа ОН-групп в молекуле ингибитора, то выбор конкретных алкилфенолов в качестве присадок к реактивным топливам определяется в основном технологическими и экономическими соображениями. [c.181]

    На современных отечественных и зарубежных нефтеперерабатывающих заводах широко применяют в основном фенол и фурфурол. Выбор растворителя для селективной очистки обусловлен его природой, качеством исходного сырья и требованиями к качеству получаемого масла. Растворитель должен сочетать хорошую растворяющую способность с высокой избирательностью по отношению к компонентам (Масляных фракций, что обусловлено структурой его молекул, полярными и дисперсионными свойствами. Несмотря на меньшее значение дипольного момента фенолапо срашению с фурфуролом его ра1створяющая способность в силу больших дисперсионных свойств выше, на что указывает меньшая КТР сырья в феноле. [c.92]


Смотреть страницы где упоминается термин Фенолы структура: [c.112]    [c.168]    [c.82]    [c.539]    [c.447]    [c.102]    [c.338]    [c.378]    [c.93]    [c.73]    [c.106]    [c.109]    [c.75]    [c.394]   
Органическая химия (1974) -- [ c.750 ]




ПОИСК







© 2024 chem21.info Реклама на сайте