Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделения методы элементов

    В заключение необходимо отметить широкое применение ионообменной адсорбции для извлечения и разделения ионов. Ионный обмен применяется для умягчения и очистки воды, извлечения ценных компонентов, например урана, золота, серебра. Сейчас нет производства по переработке урановых руд, в котором пе применялась бы ионообменная адсорбция. Ионный обмен используется для разделения редкоземельных элементов, что позволило получать нх в больших количествах и с высокой степенью чистоты. Раньше для этой цели применяли перекристаллизацию, производительность которой несравненно меньше. Ионообменная адсорбция является одним из важных методов в аналитической химии. [c.172]


    Основные методы устранения соосаждения были рассмотрены в предыдущих параграфах. Там же было упомянуто о большом значении соосаждения при анализе и разделении радиоактивных элементов, а также при определении малых количеств примесей в металлах и минералах путем осаждения с коллектором. [c.89]

    Важное значение для разделения ряда элементов имеет электролитическое осаждение на ртутном катоде, причем осаждение облегчается образованием амальгам. Так, например, для определения примеси алюминия в железных сплавах железо и многие другие металлы осаждают из сернокислого раствора на ртутном катоде, причем алюминий остается в растворе. Наконец, можно указать на применение анодного растворения металлов. Так, например, для определения неметаллических включений в стали и различных цветных сплавах поступают следующим образом. Образец металла опускают в раствор соответствующего электролита и включают ток, причем исследуемый металл является анодом. Во время электролиза металл переходит в раствор, а неметаллические примеси остаются в виде осадка. Этот метод имеет большое значение для фазового анализа металлов. [c.190]

    Разделение. Метод разделения выбирают в зависимости от свойств определяемого соединения и мешающих элементов, а также от того, какой метод анализа предполагается использовать гравиметрический, титриметрический или какой-либо другой. В практике используют химические, физические и физикохимические способы разделения. К химическим относятся главным образом методы осаждения, основанные на различной растворимости веществ, к физическим — отгонка, сублимация, плавление и т. д., к физико-химическим — экстракция, ионный обмен, хроматография и некоторые другие. Более подробно методы разделения будут рассмотрены в дальнейшем. [c.20]

    Количественные разделения методом осаждения основаны на различной растворимости соединений с одинаковым анионом или катионом. В принципе, количественные разделения могут быть осуществлены в двух вариантах. В одном из них создают такие концентрационные условия, при которых в осадок выпадает только определяемое соединение и выпадает полностью, а все остальные компоненты пробы остаются в растворе. Во втором варианте осаждают все элементы, кроме определяемого и так называемых не мешающих определению, присутствие которых не вызывает в дальнейшем каких-либо погрешностей анализа. Подавляющее большинство методов разделения основано на использовании первого варианта, т. е. осаждении определяемого компонента пробы. [c.156]


    Сущность работы. Одновременное определение натрия, калия и кальция основано на существенном различии спектров излучения этих элементов, возбужденных в пламени горелки длина волны излучения атомов натрия равна 589, калия - 768, кальция 622 нм. Это позволяет выполнять анализ смеси указанных элементов без их разделения. Метод добавок дает возможность проводить определение каждого из элементов в растворах сложного состава. [c.205]

    Благодаря большим достижениям в синтезе ионообменных смол их стали применять далеко за пределами первоначальной области их использования — в водоочистке. Иониты применяются всюду, где требуется удаление, выделение и концентрирование ионов в растворах. Иониты используются в энергетической, химической, пищевой, фармацевтической, металлургической и в ряде других от--раслей промышленности. Ионообменные смолы применяются для разделения ионов, которые до настоящего времени не могли быть разделены с помощью других методов. В частности, их применяют Для разделения редкоземельных элементов, продуктов распада радиоактивных веществ и т. Дг Широкое применение иониты находят при изготовлении чистых реагентов. [c.481]

    Спектральный анализ смеси большого числа элементов (до 20) удается проводить без их предварительного разделения метод не зависит от применяемой схемы химического анализа (сероводородный, кислотно-щелочной метод и др.). [c.182]

    Микроаналитические методы предназначены для определения малых количеств веществ (1—10 мг). Эти методы используют при наличии небольшой анализируемой пробы (например, в биохимии или клинической химии) или в тех случаях, когда из соображений безопасности следует работать с небольшими количествами веществ (радиоактивные изотопы). При проведении микрохимических определений значительно снижаются затраты времени за счет сокращения продолжительности разделений. Методы микроанализа применяют в элементном и структурном анализах. В элементном анализе при помощи микрометодов можно определить содержание основных и добавочных веществ, а также следовых веществ. Микроанализ позволяет исследовать распределение элемента в пробе (локальный анализ). Структурный анализ микропробы применяют обычно в сочетании с методами разделения для определения выделенных отдельных компонентов. Все методы микроанализа предъявляют чрезвычайно высокие требования к однородности пробы (разд. 8.2.1). [c.422]

    Очень хорошие результаты дает метод тонкослойной хроматографии при разделении трудноразделяемых элементов (например, натрия и калия кальция, стронция и бария, железа, никеля и кобальта, редкоземельных элементов, селена и теллура), при разделении элементов в разновалентных состояниях хром (III) и хром (VI), мышьяк (III) и мышьяк (V), сурьма (III) и сурьма (V), ртуть (I) и ртуть (II) [143], [c.186]

    Сильное увлечение спектральным анализом и преувеличенные надежды на его мощную разрешающую силу привели к немалым ошибкам и заблуждениям. Долгое время было совершенно неясно, сколько Hie редкоземельных элементов существует в действительности, каково их конечное число Чтобы навести порядок в столь запутанном хозяйстве , надо было разработать совершенные методы выделения и разделения редкоземельных элементов, что уст- [c.288]

    Ректификация. Ректификация — эффективный метод. Используется в промышленных масштабах для разделения и очистки ряда редких элементов. Для разделения методом ректификации пригодны соединения Zr и Hf, обладающие относительно большей летучестью алкоголяты, молекулярные соединения тетрахлоридов с хлорокисью фосфора, тетрахлорнды. Практическое осуществление ректификации сопряжено со значительными трудностями алкоголяты кипят только в вакууме, получение молекулярных соединений с хлорокисью фосфора сопряжено с применением ядовитых и огнеопасных соединений фосфора и сложностью выделения циркония и гафния из комплексного-соединения после разделения [c.345]

    При моделировании статики процесса разделения методом ректификации необходимо определить составы, температуры и расходы потоков вещества в различных точках колонны и вспомогательных аппаратов, входящих в промышленную установку. Для получения такого объема информации требуется произвести большое число вычислений, что доступно только мощным вычислительным машинам. Программа компонуется из отдельных подпрограмм — блоков. Попытаемся описать как структуру ее нескольких основных элементов (блоков программы), так и метод построения самой программы расчета материального и теплового балансов системы в целом. [c.164]

    Выбор метода И. р. зависит от св-в разделяемого в-ва, требуемой степени разделения, необходимого кол-ва продукта, экономичности процесса. Для элементов с атомными массами до 40 экономически более выгодны дистилляция, изотопный обмен и электролиз, для разделения тяжелых элементов-диффузионные методы, центрифугирование, электромагн. разделение. Однако возможности первых двух из них ограничены тем, что не все элементы образуют удобные для разделения газообразные соединения. В пер- [c.201]


    В табл. 39 и на рис. 49 приведены сведения об условиях разделения смесей элементов методом тонкослойной хроматографии. Получены удовлетворительные результаты разделения смеси Мп(П), Na, и, Са(П), Mg(II), Ва(П), 8г(П), Си(П), №(И), Со(П), Ге(Ш), РЬ(П), Zll(II), Сг(1П), А1(Ш), Сс1(11), В1(П1), 8п(1У), 8Ь(Ш), Аз(1П), Ag(I) и Hg(II) в тонком слое, состоящем из смеси силикагеля и крахмала, с лимонной кислотой в качестве электролита [620]. Оптимальные условия опыта — напряжение 1200 в/ /30 см, 0,15 М раствор лимонной кислоты. Разделение проводят за 20 мин. [c.147]

    Влияние величины ионного потенциала не проявляется, однако, столь отчетливо при рассмотрении одинаково заряженных ионов элементов — ближайших соседей плутония по актинидному ряду. Увеличение порядкового номера в ряду и—Нр—Ри и связанное с этим уменьшение радиусов ионов не приводит, как правило, к столь значительному повышению прочности комплексных соединений, которое позволило бы на этой основе построить методы разделения этих элементов, находящихся в одном валентном состоянии. [c.51]

    Разделение. Методы разделения смеси редкоземельных элементов на индивидуальные элементы весьма разнообразны по своему характеру. Прежде всего следует разделить редкоземельные элементы на цериевую и иттриевую подгруппы. Это разделение чаще всего осуществляют, осаждая цериевые земли в виде двойных сульфатов (см. синтез 13). Фракционные методы выделения отдельных редкоземельных элементов следующие  [c.39]

    Описанный метод позволяет осуществить хорошее разделение трех элементов, каждый из которых извлекается с выходом более 98%. [c.317]

    О разделении Ве, W, Мо и V сообщается в работах [574, 700, 1242]. В [574] приведены данные о возможности разделения этих элементов методом бумажной хроматографии в системах растворителей, содержащих бутаиол, различные комплексообразующие реагенты н кислоты. Показано, что величины Л/ для Ве, Мо и W возрастают с увеличением кислотности растворителя на величину Лf ванадия кислотность растворителя влияет слабо. [c.219]

    Разработан метод радиоактивационного определения примесей (в том числе и репия) в арсениде галлия с экстракционным разделением определяемых элементов [15]. [c.263]

    Особого внимания заслуживает субстехиометрический метод выделения золота, повышающий селективность экстракционного разделения. Субстехиометрическому определению злементов в радиохимическом анализе (активационный анализ, метод изотопного разбавления) посвящен обстоятельный обзор Ружички и Стары [508]. Найдены [1421] оптимальные условия разделения различных элементов, в том числе условия выделения золота, при их субстехиометрическом определении. Метод подробно рассмотрен Алимариным и Пережогиным [10]. [c.188]

    Современные методы позволяют получать иониты, физические и химические свойства которых соответствуют специфическим условиям их применения. Например, полиамяновые смолы обладают способностью к анионному обмену, а сульфосмолы — к катионному. В СССР выпускают иониты с различными наименованиями (марками) — КУ-2, КБ-4 и ряд других. Иониты используются в самых различных областях науки и техники при каталитическом крекинге в производстве бензина, для разделения редкоземельных элементов, в лабораториях аналитической химии, при анализе вытяжек из растений, в хроматографии и в ряде других областей. Особенно широко используются иониты для водоочистки. С помощью ионного обмена из воды практически можно удалить любые ионы, а следовательно, выделить разнообразные примеси вплоть до содержащихся в воде некоторых производств солей различных металлов и радиоактивных веществ. [c.190]

    Многочисленные и разнообразные примеры успешного применения в аналитической химии разделения катионов многих металлов приведены в обзорных статьях [119, 1211. Простота и доступность метода распределительной хроматографии на бумаге, возможности большого выбора элюентов способствовали широкому применению этого метода и для разделения разновалентных ионов одного элемента. Однако обычные разделения методом бумажной хроматографии производятся в течение 1—6 ч и лишь очень немно- [c.180]

    Определение величины заряда ионов. Для выяснения химизма образования многих соединений, в том числе комплексных, в водных растворах часто необходимо определить величину заряда продукта реакции. Например, известно, что ионы Т1 (IV) и Nb (V) образуют в кислых растворах пероксидные комплексы с соотношением М Н2О2 =1 1. Комплекс ниобия поглощается, катионитами значительно слабее комплекса титана на этом основании разработан метод разделения этих элементов. Пероксидным комплексам титана и ниобия с соотношением компонентов 1 1 можно приписать различные формулы [Т10 (Н02)1+, [ТЮ (НА) , (Н02)1 +, [Т1 (НА)] +. [Nb02 (НЛ)]+, [НЬО (НОа)]"+. [МЬО (НА)] и т. д. [c.212]

    Содержание больших количеств кобальта осложняет непосредственное определение никеля а-диоксимами, поэтому необходимо предварительно разделение этих элементов. Для этого используют метод отделения больших количеств кобальта в виде роданида экстракцией этилацетатом. Никель определяют ниоксимом турбидиметрическим методом или фотометрически, используя хинолин для растворения ниоксимата никеля [48]. Метод был доработан в лаборатории спектрофотометрии кафедры аналитической химии МГУ. [c.193]

    По определению академика И. П. Алимарина, аналитическая химия — наука, развиваюш,ая теоретические основы анализа химического состава веществ, разрабатывающая методы идентификации и обнаружения, определения и разделения химических элементов, их соединений, а также методы установления химического строения соединений. [c.7]

    В последнее время в литературе появилось описание кристаллических гидроокисей лантана, иттрия и некоторых лантаноидов, полученных в виде микрокристаллов. Такие кристаллические гидроокиси получали нагреванием солей с 7—10 н. раствором NaOH при 200—400° в автоклаве. Рентгенографически доказано, что получаются два вида кристаллических гидроокисей моногидроокиси LnO(OH) и тригид-роокиси Еп(ОН)з. Последние образуются при 160—260°. Гидроокиси служат исходным препаратом для получения различных соединений РЗЭ. Применяются в технологии разделения редкоземельных элементов методом дробного осаждения, где используются различие pH выделения гидроокисей и различие в их растворимости. [c.56]

    Промышленное применение комплексоны нашли при разделении редкоземельных элементов методом ионного обмена. В качестве комплексообразователей (элюантов, элюирующих агентов) применяются аминокислоты (этилендиаминтетрауксусная, нитрилтриуксусная, эти-лентриаминпентауксусная кислота и др.). В аналитической химии ком-плексонометрическое титрование трилоном Б (двунатриевая соль этилендиаминтетрауксусной кислоты) наиболее удобно для аналитического определения РЗЭ [113]. [c.78]

    Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и в каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 23). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бу-тпловьп1, амиловый), хлоропроизводные (хлороформ, четыреххлористый углерод). Иод можно извлечь бензолом, сероуглеродом, хлорное железо — диэтиловым или диизопропиловым эфиром. Лучше всего катионы металлов извлекаются органическими растворителями, если соответствующий металл предварительно связать в виде внутрикомплексного соединения. Например, свинец связывают дитизоном и извлекают четыреххлористым углеродом, никель связывают диметилглиоксимом и извлекают хлороформом в присутствии цитрата натрия. Смеси ионов различных элементов можно разделять экстракцией, используя избирательное (селективное) извлечение различными растворителями и регулируя pH раствора. Можно осуществлять также и групповые разделения ионов. [c.454]

    А. получают взаимод. ацетона с уксусным ангидридом в присут. ВРз (выход 80-85%) либо с этилацетатом в присут. jHjONa или амидов Na и Li (выход 40%). Применяют в аналнт. химии при экстракц. разделении мн. элементов, напр. А1, Со, Си, Ре(1П), Мо, Мп, РЬ, Ti, спектрофото-метрич. определении Ве, гравиметрич. определении Se и Zr, прн анализе неорг. в-в методом жидкостной хроматографии. [c.226]

    Определение. Дм определения Т. применяаот те же методы, что и для ниобия. Главная трудность-сходство хим. св-в Nb и Та, проявление эффекта потери индивидуальности Т. в присут. Nb и Ti. Для разделения этих элементов применяют осаждение Т. из р-ров таннином, экстракцию, напр, кетонами из р-ров в смеси к-т H 1-HF, купфероном и др., хроматографич. методы. Количественно Т. определяют колориметрически (с использованием пирогаллола и др.), гравиметрически, люминесцентным, рентгеиоспект-ральными, флуоресцентными, спектральными и нейтронно-активационным методами. [c.495]

    В. Фрезениуса ( Handbu h der analytis hen hemie ), выходящий в Германии с 1940. Он состоит из 4 осн. частей I -общие методы анализа П - качеств, анализ Ш - количеств, методы определения разделения хим. элементов IV - спец. методы анализа П и ПГ части - многотомные, причем каждый том посвящен одному элементу или фуппе элементов. Другие издания Мус аки н А. П., Таблицы и схемы аналитической химии, Л., 1975 Уильямс У.Д., Определение анионов, пер. с англ.. М., 1982 Атлас масс-спектров органических [c.250]

    Разделения методы (в аналитической химии) — важнейшие аналитические опера ции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы. Для разделения при меняют осаждение, электролиз, экстракцию, хроматографию, дистилляцию, зонную плавку и другие методы. В качественном анализе для разделения ионов элементов применяют групповые реагенты, которые позволяют трудно разрешимую задачу анализа сложных смесей привести к нескольким сравнительно простым задачам. Рассеянные элементы — химические элементы, которые практически не встреча ются в природе в виде самостоятельных минералов и концентрированных залежей а встречаются лишь в виде примесей в различных минералах. Р. э. извлекают попутно из руд других металлов или полезных ископаемых (углей, солей, фосфори тов и пр.). К Р. э. принадлежат рубидий, таллий, галлий, индий, скандий, германий п др. [c.111]

    Разделение избирательным восстановлением соединений ниобия. Соединения ниобия в химическом отношении менее прочны, чем аналогичные соединения тантала, что положено в основу ряда методов разделения этих элементов. Так, ЫЬгОд в смеси с ТагОб можно селективно восстановить при 900° водородом до ЫЬОг- Последующим хлорированием окислов хлором при 400—600° получают пентахлорид ниобия. Тантал в остатке. Извлечение ниобия после пятикратной переработки вос- [c.84]

Рис. 8.18. Разделение гидридов элементов методом газовой хроматографии на колонке с порапаком а — 1фи постоянной темпфатуре колонки — 85 °С б — 1фи программ1фовании ташературы от 75 до 120 °С (8 °С/мин) (газ-носитель азот) Рис. 8.18. Разделение <a href="/info/553997">гидридов элементов</a> <a href="/info/39980">методом газовой хроматографии</a> на колонке с порапаком а — 1фи постоянной темпфатуре колонки — 85 °С б — 1фи программ1фовании ташературы от 75 до 120 °С (8 °С/мин) (газ-носитель азот)
    Предложено проводить нейтронно-активационный анализ элементов после их разделения методом бумажной хроматографии [657]. Полученные хроматограммы облучают в течение 10 мин потоком нейтронов 10 н/см . с, выдерживают 5 мин после облучения и фиксируют распределение радиоактивности вдоль хроматограммы с помо-лцью -спектрометрии, авторадиографии или путем сканирования. Эта [c.149]

    Галогениды и оксигалогениды плутония используются на различных стадиях технологического процесса получения плутония. Имеются также указания на применение галогенидов для разделения актинидных элементов. Описан метод [314] отделения летучего гексафторида урана от гексафторида плутония. Запатентован сухой метод отделения нептуния от плутония, основанный на относительно высокой летучести Np U по сравнению с РиС1з [415]. [c.108]

    Разделению указанных элементов сульфатным методом благоприятствуют два фактора наличие резко различных коэффициентов распределения у АтЗ+ и Pu + и распределение микро-компонентов между твердой и жидкой фазами при изотермическом снятии пересьщения по логарифмическому закону, а не по закону Хлопина. Это позволяет за один процесс осаждения произвести более полное выделение плутония. В габл. 21 приведены чанные по изучению распределения PlH+ и АгпЗ+. [c.271]

    Наиболее распространенным методом разделения редкоземельных элементов является дробная кристаллизация. Этот метод основан на незначительной разнице в растворимости в ряду простых или двойных солей этих элементов. Для фракционирования пригодны те соли, которые не слишком легко и не слишком трудно растворимы они должны иметь заметный температурный коэффициент растворимости и дояжны быть устойчивы при повторяющихся нагреваниях и охлаждениях. Двойные нитраты магния и редкоземельных элементов наиболее часто применяются для разделения элементов цериевой подгруппы, а броматы — для разделения элементов иттриевой подгруппы. [c.53]

    Образованием соединений первого типа объясняют Б. П. Никольский и А. М. Трофимов [177] взаимодействие урана и тория с сульфокатионитом СБС. В основу опытов положено предположение, что избирательность поглощения зависит от концентрации водородных ионов в растворах солей урана и тория. Так, разделение этих элементов может быть осуществлено на смоле СБС из кислых растворов (0,5—1 N по НС1 или по HNO3) с избирательным поглощением тория, или из растворов с pH 3,8—5,0 с избирательным поглощением ионов уранила. Последний метод менее удобен вследствие узости интервала pH. [c.325]

    Разделение методом препаративной ЖХ имеет по крайней мере пять независимых элементов чистота, количество, время, трудность разделения и стоимость (рис. 1.2). Несомненно, что для достижения оптимального результата каждый из этих элементов должен быть выбран на основе компромисса. Ниже мы кратко рассмотрим каждый из них. Далее в этой главе мы более глубоко проанализируем их взаимодействие. [c.14]

    Разделение висмута и бария сульфатным методом, с последующим осаждением висмута в виде фосфата, не приводит к удовлетворительным результатам. Образующийся сульфат бария увлекает в осадок висмут, который полностью не отмывается. Наилучпшм методом разделения этих элементов оказался метод гидролиза висмута бромид-броматной смесью по Мозеру и Максимовичу с последующим переосаждением висмута в виде фосфата. Барий определяют в фильтрате осаждением серной кислотой (П. Н. Коваленко [98]). [c.114]


Библиография для Разделения методы элементов: [c.149]   
Смотреть страницы где упоминается термин Разделения методы элементов: [c.79]    [c.428]    [c.502]    [c.93]    [c.754]    [c.1424]    [c.35]   
Физико-химические методы анализа Издание 2 (1971) -- [ c.294 ]

Физико-химические методы анализа (1971) -- [ c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения



© 2025 chem21.info Реклама на сайте