Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции пиридоксальфосфата

Рис. 13. Промежуточные формы пиридоксальфосфата в фермент-субстратном комплексе в ходе реакции переаминирования Рис. 13. <a href="/info/100165">Промежуточные формы</a> пиридоксальфосфата в <a href="/info/187584">фермент-субстратном комплексе</a> в <a href="/info/592095">ходе реакции</a> переаминирования

    Еще одной клеточной реакцией, для осуществления которой требуется пиридоксальфосфат, является эпимеризация аминокислот  [c.315]

    Пиридоксальфосфат также участвует в реакции декарбоксилирования аминокислот, поэтому протонированный имин IV обладает необходимыми электронными особенностями, способствующими осуществлению декарбоксилирования. [c.315]

    Пиридоксальфосфат (139) — кофермент, участвующий в большом числе реакций а-аминокислот, включая рацемизацию, декарбоксилирование, трансаминирование и элиминацию или замещение у р- и 7-атомов углерода [112]. С точки зрения механизма псе эти реакции могут быть классифицированы как требующие [c.634]

    Следует отметить, что в выяснение биологической роли витамина В и пиридоксальфосфата в азотистом обмене существенный вклад внесли А.Е. Браунштейн, С.Р. Мардашев, Э. Снелл, Д. Мецлер, А. Майстер и др. Известно более 20 пиридоксалевых ферментов, катализирующих ключевые реакции азотистого метаболизма во всех живых организмах. Так доказано, что пиридоксальфосфат является простетической группой аминотрансфераз, катализирующих обратимый перенос аминогруппы (КН,-группы) от аминокислот на а-кетокислоту, и декарбоксилаз аминокислот, осуществляющих необратимое отщепление СО от карбоксильной группы аминокислот с образованием биогенных аминов. Установлена коферментная роль пиридоксальфосфата в ферментативных реакциях неокислительного дезаминирования серина и треонина, окисления триптофана, кинуренина, превращения серосодержащих аминокислот, взаимопревращения серина и глицина (см. главу 12), а также в синтезе б-аминолевулиновой кислоты, являющейся предшественником молекулы гема гемоглобина, и др. [c.227]

    Пиридоксальфосфат является коферментной формой витамина В ,, входит в состав ферментов, катализирую-ш,их превраш,ения а-аминокислот, основным из которых можно считать реакцию переаминирования. [c.278]

    Под действием фермента гидроксиметилазы в присутствии коферментов — тетрагидрофолиевой кислоты и пиридоксальфосфата— аминокислота серин разрушается с образованием глицина и активированного формальдегида. Действие этого фермента с успехом моделирует система, в состав которой входят 1Ч,К -диарилэтилендиамин, пиридоксальфосфат и ион металла при pH 5,5 [4]. Необходимо, однако, отметить, что данная система не является истинным катализатором процесса деструкции серина, так как в ходе реакции не происходит регенерации каталитической системы. В этом процессе пиридоксальфосфат действует как электрофильный рецептор, а Ы,Н -диарилэтилен- [c.283]

    Пиридоксин и его производные пиридоксаль и пиридоксалин принадлежат к группе витаминов Ве. Пиридоксаль-5-фосфат принимает участие в ферментативных реакциях переаминирования между амино- и а-кетокислотами, декарбоксилирования и рацемизации а-аминокислот, в реакциях расщепления и конденсации Р- и у-заме-щенных а-аминокислот. Реакция переаминирования была открыта советскими биохимиками Браунштейном и Крицман. Шемякин и Браунштейн, а затем Метцлер, Икава и Снел показали, что в процессах переаминирования участвуют шиффовы основания, которые образуются при реакции пиридоксальфосфата и аминокислоты. [c.307]


    Эти два механизма имеют очень важное значение для удлинения цепи при биосинтезе. Однако имеются и другие механизмы. Например, глицин (карбоксилированный метиламин) способен вступать в присутствии пиридоксальфосфата в реакцию конденсации с такими соединениями, как сукцинил-СоА [уравнение (8-20)], сопровождаемую декарбоксилированием, в результате которой происходит удлинение углеродной цепи и одновременно введение аминогруппы. Аналогично серин (карбоксилированный этаноламин) в биосинтезе сфингозина конденсируется с пальмитоил-СоА [уравнение (8-21)]. Фосфатидилсерин декарбоксилируется до фосфатидилэтаноламина на последней стадии синтеза этого фосфолипида (рис. 12-8). [c.488]

    Во многих случаях коферментами являются витамины. Так, в состав пируватдекарбоксилазы, катализирующей образование уксусной кислоты из пировиноградной кислоты, входит тиамин (витамин В1). В состав дегидрогеназ часто входит рибофлавин (витамин В2), в состав аминотрансфераз — пиридоксальфосфат. Функцию простетических групп в молекуле ферментов иногда могут выполнять комплексы, содержащие ионы металлов. Считают, что металлы при соединении фермента с субстратом сближают последний с каталитическим центром фермента, обеспечивая начало реакции, или же непосредственно участвуют в процессе переноса электронов. Известно по меньшей мере 15 ионон металлов, в том числе микроэлементов, активирующих ферменты. [c.29]

    Пиридоксальфосфат обладает рядом особенностей, которые делают его великолепным катализатором реакций переамипирования. Во-первых, гидроксильная группа идеально расположена для того, чтобы осуществлять общий кислотный и основной катализ. Будучи внутримолекулярным, такой катализ особенно эффективен. Во-вторых, положительно заряженный азот пиридинового кольца действует как сток (акцептор) электронов, понижая свободную энер- [c.434]

    Многие альдолазы (разд. К,2) содержат в активном центре боковые-группы лизина. Аминогруппы этих боковых цепей образуют шиффовы основания с кетонными субстратами. Эти реакции предшествуют основным реакциям расщепления и образования связей С—С. Начальная реакция взаимодействия кофермента пиридоксальфосфата с аминокисло- [c.143]

    РИС. 8-6. Некоторые реакции шиффовых оснований пиридоксальфосфата (реакции типа 8 в табл 9-1). А. Образование хиноидного промежуточного соединения Б. Элиминирование Р-заместителя В. Переаминирование. [c.217]

    При действии D-a-лизин-мутазы (табл. 8-6) атом водорода перемещается от С-5 к С-6 [185]. Для этой реакции необходимы два белка, а также пиридоксальфосфат, который, по-видимому, непосредственно участвует в переносе аминогруппы. Родственная этому ферменту L- -лизин-мутаза нуждается в пирувате как в кофакторе [163]. [c.296]

    Биохимическое переаминирование — важнейшая реакция переноса группы в аминокислотном обмене. Она катализируется аминотрансферазами (трансаминазами), коферментом является пиридоксальфосфат, который принимает участие в обмене аминогрупп, образуя шиффовы основания в качестве промежуточной ступени. [c.70]

    Данное взаимопревращение нуждается в пиридоксальфосфате — производном витамина группы Ве. Альдегидная группа пиридоксальфосфата требуется, чтобы а) образовать имин с аминокислотой I б) сохранять NHг-группу при превращении аминокислоты I в соответствующую кетокис-лоту I в) дать имин с а-кетокислотой II. Интересно, что по завершении всей сложной последовательности реакций пиридоксальфосфат регенерируется и способен принять участие в следующих взаимопревращениях аминокислот и а-кетокислот, известных под названием переаминирования. Эти процессы катализируются комплексом пиридоксальфосфата с ферментом, хотя в реакциях, представленных ниже, показан только пиридоксальфосфат. [c.30]

    Наличие отрицательного заряда на р-углероде может быть продемонстрировано улавливанием аниона N-мeтилмaлeинимидoм по реакции присоединения Михаэля. Интересно, что пиридоксальфосфат помогает стабилизировать отрицательныай заряд (анионную форму) на а, р- и у-атомах углерода. Отрицательный заряд в а- и у-положениях стабилизируется благодаря сопряжению с кольцевым атомом азота, в то время как иминный азот стабилизирует отрицательный заряд в р-положении. В присутствии ОгО положения а и V могут дейтерироваться. Эта характерная последовательность реакций протоиирования демонстрирует, что роль пиридоксальфосфата как электронного стока заключается в стабилизации карбанионных промежуточных соединений путем делокализации избыточной электронной плотности [315]. [c.438]

    Ясно, что помимо протонного переноса пиридоксальфосфат участвует также в реакциях, включающих образование карбаниоиов. При формировании отрицательного заряда на а-углероде аминокислоты-субстрата возникает новая проблема — стереохимическая. Протонируется ли в конечном счете карбанион (несущий отрицательный заряд) в составе комплекса с ферментом путем обмена протонов со средой или это происходит в результате таутомерного превращения кофермента Какой тип модельных соединений можно выбрать для лучшей имитации таких процессов  [c.440]

    Коферментом в этой реакции является пиридоксальфосфат, который в процессе реакции претерпевает существенные спектральные изменения, что позволяет проследить за кинетикой реакции. В общих чертах механизм реакции заключается в переносе аминогруппы с аминокислоты на пиридоксальфосфат с образованием пиридоксаминфосфата и кетокис-лоты, после чего аминогруппа переносится к другой кетокислоте с образованием новой аминокислоты  [c.212]


    Пиридоксальфосфат — еще один кофермент, роль которого в химических превращениях удалось установить. Важная клеточная реакция, в которой участвует этот кофермент, — тран-саминирование  [c.314]

    Пиридоксаминфосфат может затем реагировать с другой оксокислотой по реакции, обратной указанной выше, с выделением пиридоксальфосфата и образованием новой аминокислоты  [c.315]

    Из приведенных рассуждений следует, что точно так же как тиаминпирофосфат присоединяет молекулу к карбониону своего сопряженного основания для осуществления реакции субстрата, энергетически невозможной для изолированной молекулы, так и пиридоксальфосфат использует свою альдегидную группу для взаимодействия с аминогруппами с целью достижения такого же эффекта. Очевидно, что пиридоксальфосфат соединяется с ферментом за счет конденсации альдегидной группы с концевой аминогруппой остатка лизина (табл. 18.1) в белковой цепи фермента. Строго говоря, в вышеприведенных реакционных схемах вместо альдегидной функции должна быть изображена иминная функция. [c.315]

    По-видимоМу, специфичность каждой реакции зависит от вида протеина, связанного с кодекарбоксилазой [11]. Строение пиридоксальфосфата доказано синтезом его из пиридоксамина или из пиродоксина реакциями фосфорилирования и окисления [32, 33]. [c.155]

    Фосфорнь и фир альдегидной формы витамина Вб, пиридоксальфосфат (пиридоксаль-Р, или РЬР), необходим для многих ферментов, катализирующих реакции превращения аминокислот и аминов. Число таких реакций огромно, и пиридоксальфосфат несомненно является одним [c.209]

    Кофермент А содержит активные SH-группы и катализирует реакции переноса ацильного остатка in vivo, в частности в биосинтезе жирных кислот. Пиридоксальфосфат катализирует реакции трансаминирования и декарбоксилирования аминокислот, в то время как тиаминпирофосфат участвует в метаболизме пентоз и в биохимических реакциях ос-кетокислот. [c.137]

    Пиридоксальфосфат идеально приспособлен для катализа реакции аминосоединений. Поэтому его обнаружение в роли необходимого кофактора гликогенфосфорилазы (гл. 7 разд. В, 5) вызвало удивление. Кофермент связан с фосфорилазой в основном так же, как и в случае трансаминазы (разд. Д, 6), но функция его не ясна [43]. Поразительным является тот факт, что, по имеющимся данным, 50% всего количества витамина Ве в организме находится в виде PLP в составе мышечной фосфорилазы [44]. Из исследований, проведенных на крысах с недостаточностью витамина Ве, следует, что PLP в фосфорилазе может служить резервным источником, значительная асть которого при недостаточности витамина Ве может расходоваться на другие цели. [c.222]

    Пиридоксальфосфат 8.9 (витамин Ве, руСНО) принимает участие во многих реакциях превращения аминокислот, включая рацемизацию, декарбоксилирование, трансаминирование, 3-за-мещение, элиминирование и конденсацию. [c.200]

    Лен оказывает противопиридоксидное действие посредством соединения под названием линатин (1-аминоглутамин-D-npo- пин). Это действие проявляется на уровне ферментативных реакций, в которых участвует пиридоксальфосфат в качестве кофермента [60]. [c.345]

    В реакциях переноса аминогрупп (реакции переаминирования) участвуют производные витамина Вб - пиридоксина, который в качестве кофермен-та имеет две формы - пиридоксальфосфат и пиридоксаминфосфат (рис. 12). [c.38]

    Существует несколько методов, с помощью которых можно обнаружить аминокислотные остатки, ответственные за биологическую активность белков. В первом методе белок необходимо подвергнуть частичной деградации, в особенности вблизи Л/- и С-кон-цов соответственно с помощью аминопептидаз и карбоксипептидаз. Например, удаление (с помощью карбоксипептидазы) трех остатков с С-конца рибонуклеазы не влияет на ее активность. Более глубокая деградация в этой части молекулы, однако, приводит к инактивации. По второму методу необходимо подвергнуть химической модификации боковые группы аминокислотных остатков белка. Естественно, что результаты такого рода экспериментов проще интерпретировать в том случае, когда эта модификация специфична. Например, легко идентифицировать область связывания кофермента пиридоксальфосфата в аминотрансферазе. Альд-имин, образующийся в результате конденсации кофермента с е-аминогруппой остатка лизина, восстанавливают борогидридом натрия и идентифицируют, так как он не затрагивается при гидролитическом распаде. Аналогично, ферменты, содержащие тиольные группы, такие как алкогольдегидрогеназа, 3-фосфоглицераль-дегиддегидрогеназа и папаин, обычно ингибируют реакцией с п-хлормеркурибензойной или иодуксусной кислотой. Специфичность модификации белков можно усилить, если структура реаген- [c.282]

    Роль пиридоксальфосфата (139) в ферментативных реакциях а-аминокислот была выяснена в результате элегантных работ групп А. Е. Браунштейна [112] и Снелла [122]. Две эти группы исследователей независимо предложили общий механизм пири-доксальфосфат-зависимых ферментативных реакций, в основном на основании изучения неферментативных реакций между амино- [c.637]

    Упомянутые выше модельные эксперименты привели Браунштейна и Снелла к предположению, что важнейшей чертой пири-доксальфосфат-зависимых реакций является образование имина (основания Шиффа) между а-аминогруппой аминокислоты и альдегидной группой пиридоксальфосфата. Это предположение получило широкое признание. В модельных экспериментах обычно использовался пиридоксаль, поливалентный ион металла (Са +, Ре +, А1 +) и подходящий субстрат — аминокислота. Типичная реакция трансаминирования, которая мол<ет быть проведена таким путем, изображена на схеме (94). Для достижения полноты реакции необходим большой избыток субстрата. [c.638]

    Успех модельных экспериментов с участием пиридоксаля и ионов металлов в дублировании многих ферментативных реакций а-аминокислот позволил предположить, что ионы металлов могут играть важную роль и в соответствующих ферментативных реакциях. Однако в действительности это, по-видимому, не так получены высокоочищенные препараты ферментов, требующие пирн-доксальфосфат, но не нуждающиеся для проявления полной активности в ионах металла [124]. Функция иона металла в модельной системе состоит, вероятно, в поддержании правильной геометрии промежуточного имина и тем самым в облегчении делокализацни заряда. В ферментативной реакции эту функцию выполняет сам фермент. За исключением этой особенности, складывается впечатление, что роль пиридоксальфосфата очень близка к роли пиридоксаля в модельной системе. Поскольку реакция образования холофермента из кофермента и апофермента заключается в образовании имина пиридоксальфосфата с е-аминогруппой лизина, образование имина (153), участвующего в ферментативной реакции, должно происходить в результате переаминирования, имеющего место в присутствии аминокислотного субстрата схема (98) . [c.641]

    Было показано наличие строгого стереохимического контроля реакций, катализируемых пиридоксальфосфатом [125]. Важным фактором активации а-связей я-системой является стереохимическое расположение ст-связи относительно близрасположенных л-орбиталей. В соответствии с этим Донатаном предложено [126], что разрывающаяся ст-связь должна лежать в плоскости, перпендикулярной плоскости я-системы кофермента. Именно такая конформация позволяет достичь максимального ст — я-перекрывания и максимально уменьшить энергию переходного состояния разрыва связи. Донатан предположил далее, что конформация может контролироваться апоферментом, возможно посредством связывания карбоксилат-иона, что имин (153) может принимать одну из трех возможных конформаций. Последние схематически представлены на схеме (99). Здесь прямоугольником обозначена плоскость пиридинового кольца глаз наблюдателя направлен вдоль связи — N . В каждом случае вертикальной линией изображена лабильная ст-связь. Таким образом, конформация (154) благоприятствует трансаминированию, (155) — декарбоксилированию, а (156) — удалению R (как в серингидроксиметилазе). [c.641]

    Сам по себе пиридоксаль та1кже обладает способностью катализировать те же реакции, что и пиридоксальфосфат-зависи-мые ферменты, однако скорость в последнем случае в миллион раз выше [17]. Катализируемая пиридоксалем реакция трансаминирования протекает по механизму (8.13), включающему изомеризацию двух оснований Шиффа [18]. Механизм первой из представленных на схеме (8.13) реакций (реакции образования пиридоксамина) более подробно описывается уравнением (8.14). [c.201]

    Если конъюгат аминокислоты и пиридоксальфосфата ориентирован в активном центре фермента таким образом, что карбоксильная группа располагается перпендикулярно плоскости конъюгата, то пространственные и электронные факторы благоприятствуют протеканию реакции декарбоксилирования. Многочисленные данные свидетельствуют о том, что при катализе а-декарбо.ксилазами пространственное расположение атомов вокруг связи а-С—N определяется связыванием перифери- [c.206]

    Фосфорилирование пиридоксаля и пиридоксамина является ферментативной реакцией, протекающей при участии специфических киназ. Синтез пиридоксальфосфата, например, катализирует пиридоксалькиназа, которая наиболее активна в ткани мозга. Эту реакцию можно представить следующим уравнением  [c.227]

    Доказано, что в животных тканях происходят взаимопревращения пиридоксальфосфата и пиридоксаминфосфата, в частности в реакциях трансаминирования и декарбоксилирования аминокислот (см. главу 12). [c.227]


Смотреть страницы где упоминается термин Реакции пиридоксальфосфата: [c.88]    [c.245]    [c.66]    [c.111]    [c.113]    [c.134]    [c.398]    [c.268]    [c.608]    [c.404]    [c.709]   
Смотреть главы в:

Метаболические пути -> Реакции пиридоксальфосфата




ПОИСК





Смотрите так же термины и статьи:

Пиридоксальфосфат



© 2025 chem21.info Реклама на сайте