Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды и родственные им соединения

    Сахариды и их производные Аминокислоты, пептиды, протеины Стероиды и родственные соединения [c.387]

    Ж. Органическая химия. Общие и теоретические вопросы. Синтетическая органическая химия. Общие синтетические методы. Алифатические соединения. Алициклические соединения. Ароматические соединения. Гетероциклические соединения. Элементоорганические соединения. Синтез соединений с мечеными атомами. Природные вещества и их синтетические аналоги. Углеводы и родственные соединения. Терпены и родственные соединения. Стероиды и родственные соединения. Алкалоиды. Витамины. Природные антибиотики. Аминокислоты, пептиды, белки, нуклеотиды. Прочие природные вещества. [c.33]


    Е. Природные органические соединения и их синтетические аналоги углеводы и родственные соединения терпены и родственные соединения стероиды и родственные соединения алкалоиды витамины антибиотики аминокислоты, пептиды, белки нуклеозиды, нуклеотиды, нуклеиновые кислоты прочие природные соединения. [c.72]

    Другая возможность состоит в том, что вещества со сродством к воде отнимали молекулы воды от мономеров путем специфических взаимодействий даже в водной среде. Конденсирующими агентами для синтеза пептидов могли быть цианат, цианамид и родственные соединения [181, 336, 338, 581, 903, 982, 1270, 1271, 1457, 1792—1795]. Интересно, что конденсация, а также синтез мономеров могут вызываться ультрафиолетовым светом [1239, 1452, 1457, 1458, 1528, 1794]. Пирофосфат (или, в более общей форме, полифосфат) тоже мог служить конденсирующим агентом [1270, 1500, 1501]. Это соединение было получено в различных довольно вероятных абиотических реакциях [581, 1167, 1272, 1348]. В этой связи возникает проблема, каким образом фосфор, содержащийся в нерастворимых фосфатах (а большая часть этого элемента и должна была содержаться именно в них) мог вовлекаться в реакции [1671, 1672, 1675]. [c.51]

    Представление о пространственной структуре пептидов и белков, якобы "предопределенной конформацией остова", не следует ни из экспериментальных фактов, ни из результатов расчета. Оно родственно а-спиральной концепции и является следствием стереотипности мышления, а также, по-видимому, магии слов. Появление таких терминов, как "остов", "основа", "скелет", обычно связано с необходимостью подчеркнуть фундаментальные, самые существенные свойства структуры или ее частей, В лексикон исследователей пространственного строения пептидов и белков слова "пептидный остов" и "пептидный скелет" пришли от исследователей химического строения этих соединений. Там они совершенно точно передавали суть химической структуры изучаемых объектов. Но эти слова потеряли свой первозданный смысл и приобрели ложный, иллюзорный, как только стали употребляться в описаниях пространственного строения пептидов и белков. Основные цепи пептидных и белковых молекул обретают лишь видимость остова или скелета в нативных конформациях, т.е. в состоянии, когда реализована полная схема межостаточных невалентных взаимодействий, прежде всего, взаимодействий типа "боковая цепь - боковая цепь" и "боковая цепь - основная цепь". Вне этих взаимодействий, т,е, в условиях денатурации, видимость пропадает, иллюзия рассеивается и химическая основа пептидов и белков превращается в гибкую цепь, которая не может самостоятельно удерживать свою форму, В предположении об особой конформационной роли пептидного остова авторы [22] делают одно исключение, В связи с этим они замечают "Сказанное не относится к ситуации, когда следует учитывать дающие весьма существенный вклад в конформационную энергию электростатические взаимодействия ионогенных групп в этом случае конформация боковой цепи, несущей ионогенную группу, должна быть "приравнена" к конформации пептидного остова" [22, С, 36], Таким образом, в структурной организации пептидов особая роль отводится также электростатическим взаимодействиям и, прежде всего, взаимодействиям между заряженными группами. [c.399]


    Метод ЯМР особенно успешно применяется для определения конформаций малых пептидов, и текущие исследования включают большое число соединений, обладающих физиологически важными свойствами. Среди них пептидные гормоны млекопитающих и родственные по действию вещества, а также пептидные антибиотики, и несомненно, эти достижения прояснят подробности взаимодействия рецептора с молекулой (см. также разд. 23.7.3.7.). [c.439]

    Лейкотриены и родственные им соединения стали доступны для широких биологических испытаний только после разработки метода их химического синтеза. Пептидные лейкотриены получают из синтетического LTA., и соответствующего пептида, т. е. по схеме, аналогичной биосинтезу зтих соединений сам LTA.j можно получить как полным химическим синтезом, так и путем химической трансформации арахидоновой кислоты. [c.759]

    ПЕПТИДЫ И РОДСТВЕННЫЕ ИМ СОЕДИНЕНИЯ [c.70]

    Аминокислоты, пептиды и протеины, или белки образуют группу химически и биологически родственных соединений, которым принадлежит очень важная роль в жизненных процессах. Это в особенности относится к белкам, присутствующим вместе с нуклеиновыми кислотами (стр. 1044) в каждой живой клетке, что отражено уже в их названии протеины (то TTfxo ov, то протон — первый, основной). [c.349]

    Аминокислоты, пептиды, протеины образуют группу химически и биологически родственных соединений, которым принадлежит важная роль в жизненных процессах, протекающих в растительном и животном мире. Это особенно относится к белкам, присутствующим вместе с нуклеиновыми кислотами в каждой живой клетке. При полном гидролизе белки и пептиды распадаются на а-аминокарбоновые кислоты H2N H(R) 00H. Из гидролизатов белков выделено более 20 так называемых природных аминокислот, которые по конфигурации асимметричного атома углерода принадлежат к одному и тому же стерическому ряду (Ь) аминокислот, отличаясь лишь величиной К. [c.61]

    Прогресс, достигнутый в ходе решения столь сложный проблемы, был, естественно, результатом усилий многих исследователей. Среди них — Лайнус Полинг (Калифорнийский технологический институт), получивший в 1954 г. Нобелевскую премию. В 1951 г. Полинг писал Четырнадцать лет назад профессор Р. Кори в я, предприняв очень энергичные, но безуспешные попытки решить задачу построения удовлетворительной модели конфигурации полипептидных цепей в белках, решили попытаться справиться с этой задачей косвенным методом, тщательно изучив кристаллы аминокислот, простых пептидов и родственных соединений для того, чтобы получить абсолютно надежные и подробные сведения о структурных характеристиках веществ подобного рода и в конце концов получить возможность уверенного предсказания точных конфигураций полипептидных цепей в белках [Re ord. hem. Prog., 12, 156—157 (1951)]. Эта работа на простых веществах, проводившаяся в течение более 14 лет, позволила в конце концов Полингу с сотрудниками предложить структуру, которая, вероятно, является важнейшей вторичной структурой в химии белков — а-спираль. [c.1057]

    Недавние результаты, полученные в различных областях, указывают на щирокую распространенность в нервной ткани неболь-щих пептидов и на их влияние на эту ткань. Так, оказалось, что выделенный из мозга свиньи природный материал, обладающий наркотическим действием и долгое время постулировавщийся, представляет собой два тетрапептида [34] (17) и (18). Существование таких молекул, обладающих свойствами физиологических передатчиков, предполагалось и ранее для объяснения функций морфиновых рецепторов, играющих важную роль в передаче болевых ощущений, однако морфин и родственные соединения не являются для этих рецепторов обычными агонистами. Интересно отметить, что в обоих указанных пептидах Л -концевой аминокислотой является тирозин, что было причиной оживленного обсуждения связи между топологией пептидов и морфина [35]. [c.294]

    Чтобы повествование строилось на четко разделенных по материалу разделах, данная группа была подразделена на небольшие линейные пептиды, циклические дипептиды (2,5-диоксопиперази-ны), циклические гомо- и гетеродетные, большие и смешанные пептиды под этими названиями и сгруппированы различные классы родственных соединений. Поскольку рассматриваемая область характеризуется обширным материалом, интересным не только с точки зрения химии, на эту тему за последние годы появился ряд обзоров общего характера, хотя литература обобщена также и в ежегодных обзорах [39]. Кроме того, имеется множество превосходных обзоров, посвященных отдельным аспектам этой общей темы, и ссылки на эти обзоры будут приведены в соответствующих разделах. [c.295]

    Фосфиновый (33) [70] и сульфоксиминовый (34) [71] пептиды являются специфическими ингибиторами глутаминсинтетазы их Л -концевые аминокислоты, встречающиеся в свободном состоянии, структурно близки глутамину. Особенно примечательно то, что оба трипептида являются более сильными ингибиторами микробного роста, чем входящие в их состав аминокислоты, что показывает важность этих пептидов как переносчиков аналогов аминокислот. Родственное соединение (35) предположительно является токсином, вызывающим симптомы болезни венчика бобовых [72]. [c.302]


    Вообш,е говоря, циклические депсипептиды можно разделить на две большие группы, а именно группу с регулярно чередующимися пептидными и сложноэфирными связями и группу с нерегулярным внедрением сложноэфирных связей. Валиномицин (88), энниатины (89) и боверицин (90), большинство которых было охарактеризовано еще 25 лет назад, принадлежат к первой группе. Сделанное в середине 60-х годов наблюдение о том, что валиномицин и родственные соединения обладают единственными в своем роде избирательными возможностями транспорта ионов, возобновило интерес к этим соединениям, отнесенным на этом основании к ионофорам. Эти пептиды образуют имеющие важное биологическое значение липидорастворимые комплексы с полярными катионами, такими как К" , Ыа+, Са +, Мд +, а также с биогенными аминами. Многообразные физические исследования указывают на то, что кинетика образования и распада комплекса и скорости диффузии ионофоров и их комплексов через липидные барьеры настолько благоприятны, что их транспорт через биологические и искусственные мембраны достигает в некоторых случаях величин, превосходящих соответствующие величины для ферментных систем. Биологические применения ионофоров, среди которых имеются полиэфиры и синтетические соединения, всесторонне рассмотрены в обзорах [142, 143]. [c.321]

    Аминокислоты, пептиды, белки и ферменты образуют группу химически и биологически родственных соединений, которым принадлежит исключительная роль во многих жизненно важных процессах [1, 2]. Биогенная связь этих веществ подтверждается полным гидролизом белков и пептидов, которые распадаются на а-аминокарбоновые кислоты (HjN- HR- OOH). Все аминокислоты можно рассматривать как С-замещенные производные аминоуксусной кислоты. К настоящему времени из гидролизатов белков выделено более 20 аминокислот, которые по конфигурации асимметрического атома углерода принадлежат к 1-стерическому ряду, отличаясь друг от друга в основном остатками заместителей [3-5]. а-Аминокислоты, имеющие цвиттерионную природу, являются наиболее важными и многочисленными среди всех аминокислот, встречающихся в природе. Общее число а-аминокислот, идентифицированных в свободном или связанном виде из живых организмов, исчисляется сотнями, и число их увеличивается [1,2]. Все а-аминокислоты, обнаруженные в белках, за исключением глицина, хиральны [3, 6]. Больщинство других а-аминокислот, обнаруженных в природе, также имеют -конфигурацию а-углеродного атома, однако известны многие природные а-аминокислоты D-ряда [7]. D-ами-нокислоты выделены из микроорганизмов [8, 9], растений [7, 10, 11], грибов [12], насекомых [13] и морских беспозвоночных [14, 15]. Также эти кислоты найдены в белках животных [16] и в пептидах, выделенных из раковых новообразований [17]. Природные галогенированные а-аминокислоты и пептиды редко встречаются в природе, и их можно отнести к новой группе соединений [18-20]. [c.289]

    С введением газожидкостной хроматографии (ГЖХ) в качестве метода анализа аминокислот, пептидов и родственных соединений значительно возросли возможности новых достижений в области пептидной химии. Значительные усилия были направлены на развитие аминокислотного анализа методом ГЖХ, для чего исследовались различные типы производных. Однако в количественном анализе всем ГЖХ методам приходилось конкурировать с хорошо разработанными методами ионнообменной хроматографии, отличающимися высокой степенью автоматизации, точности и даже скорости анализа (например, метод ли-гандного анализа). По этой причине ГЖХ аминокислот в последние годы нашла практическое применение в большей мере для некоторых специальных задач, где она могла даже превосходить другие хроматографические методы, а не для количественного определения аминокислот в сложных смесях. Однако теперь ГЖХ можно использовать в качестве дополнительного метода и для этой цели благодаря аналитическому подходу, разработанному главным образом Герке и сотр. [1]. [c.142]

    Кристаллизация и кристаллические структуры. 9. Электрические и магнитные явления. 10. Спектры и некоторые другие оптические свойства. 11. Радиационная химия и фотохимия, фотографические процессы. 12. Ядерные явления. 13. Технология ядерных превращений. 14. Неорганическая химия и реакции. 15. Электрохимия. 16. Аппаратура, оборудование заводов. 17. Промышленные неорганические продукты. 18. Экстрактивная металлургия. 19. Черные металлы и сплавы. 20. Цветные металлы и сплавы. 21. Керамика. 22. Цемент и бетон. 23. Сточные воды и отбросы. 24. Вода. 25. Минералогическая и геологическая химия. 26. Уголь и продукты переработки угля. 27. Нефть, нефтепродукты и родственные соединения. 28. Детонирующие и взрывчатые вещества. 29. Душистые вещества. 30. Фармацевтические препараты. 31. Общая органическая химия. 32. Физическая органическая химия. 33. Алифатические соединения. 34. Алициклические соединения. 35. Неконденсированные ароматические системы. 36. Конденсированные ароматические системы. 37. Гетероциклические соединения (с одним гетероатомом). 38. Гетероциклические соединения (более чем с одним гетероатомом). 39. Элементоорганические соединения. 40. Терпены. 41. Алкалоиды. 42. Стероиды. 43. Углеводы. 44. Аминокислоты, пептиды, белки. 45. Синтетические высокомолекулярные соединения. 46. Краски, флуоресцентные отбеливающие агенты, фотосенсибилизаторы. 47. Текстиль. 48. Технология пластмасс. 49. Эластомеры, включая натуральный каучук. 50. Промышленные углеводы. 51. Целлюлоза, лигнин и др. 52. Покрытия, чернила и др. 53. Поверхностно-активные вещества и детергенты. 54. Жиры и воска. 55. Кожа и родственные материалы. 56. Общая биохимия. 57. Энзимы. 58. Гормоны. 59. Радиационная биохимия. 60. Биохимические методы. 61. Биохимия растений. 62. Биохимия микробов. 63. Биохимия немлекопитающих животных. 64. Кормление животных. 65. Биохимия млекопитающих животных. 66. Патологическая химия млекопитающих. 67. Иммунохимия. 68. Фармакодинамика. 69. Токсикология, загрязнение воздуха, промышленная гигиена. 70. Пищевые продукты. 71. Регуляторы роста растений. 72. Пестициды. 73. Удобрения, почвы и питание растений. 74. Ферментация. [c.50]

    С -Замещенные аминокислоты (2) не обнаружены в биологически активных полипептидах. а-Окси-а-аминокислоты (2) (Х = ОН) содержатся в родственных пептидам природных соединениях, например в алкалоидах спорыньи, цефалоспорине, лико-маразмине и др. (ср. [2080]). а-Аминоизомасляная кислота (2) (Х = СНз, а-метилаланин) найдена в гидролизатах белков и в одном антибиотике (ср. [1367]). [c.195]

    Тиоэфиры и родственные соединения. Эфиры тиофенолов представляют собой активированную форму карбоксильных соединений, используемую в синтезе пептидов 1961, 2007]. [c.98]

    Исследования по синтезу окситоцина и ангиотензина (С. А. Гиллер, Г. И. Чипен) привели к разработке технологического варианта синтеза этих гормонов. К этим работам примыкают исследования по С1штезу различных аналогов окситоцина и вазопрессина, проводимые В. Ф. Мартыновым, Ж. Д. Беспаловой, М. И. Титовым, О. А. Кауровым, синтезу аналогов ангиотензина, а также фрагментов инсулина (Ю. В. Митин и сотр.). Среди работ по синтезу биологически активных пептидов значительный интерес представляют исследования по синтезу пептидных производных сарколизина и родственных соединений (И. Л. Кнунянц и О. В. Кильдишева, а также А. Я. Берлин и Е. В. Шкодинская). В ходе этих исследований было изучено влияние природы и последовательности аминокислотных остатков на противоопухолевую активность пептидов и их токсичность. [c.516]

    В 1929 г. Ф. Г. Хопкинс открыл трипептид глутатион (05Н) и показал, что он находится в больщинстве клеток, если не во всех. В клетках животного происхождения это соединение обычно находится в концентрации 1—5 мМ. Более низкое содержание обнаружено в бактериях. Глутатион встречается также в зеленых растениях и грибах, но обычным источником его выделения служат дрожжи. Родственный глутатиону пептид с неизвестной функцией, офтальмовая кислота (первоначально выделенная из хрусталика глаза), имеет почти такую же структуру с той лишь разницей, что у оф-тальмовой кислоты на месте 5Н-группы находится СНз-группа. [c.178]

    Полярность этих веществ также возрастает при удлинении цепи. Соответственно температура при ГХ пептидов должна быть выше, и это сильно ограничивает выбор жидких фаз. Даже если предположить, что с ростом длины цепи число выявляемых компонентов существенно уменьшается, оно все же остается настолько большим, что даже эффективности ГХ и родственных ей методов оказывается недостаточно исследователю приходится мириться с неудовлетворительным разделением и наложением пиков пептидов. Подобные явления будут более заметны для сходных по структуре веществ и соединений, имеющих большое число возможных изомеров. Это означает, что как раз для наиболее длинных фрагментов, которые, естественно, дают ббльшую информацию об исходной последовательности, разделение будет хуже. [c.338]

    У Крама и Хэммонда основной скелет учебника — реакции, их систематика и механизм, образование и разрыв химических связей, в особенности связей с углеродом, а собственно систематический материал органической химии — соединения, их родственные связи и т.д. — сообщается попутно и поэтому эпизодичен. Лишь некоторые большие группы соединений сконцентрированы в шести специальных главах (22—27). Это гетероциклы (в весьма лаконичном, чтобы не сказать поверхностном, изложении), углеводы и фенольные соединения растительного происхождения, аминокислоты, пептиды и алкалоиды, липиды, терпены и стероиды, полимеры, углеводороды нефти. Как видно, эти главы, посвященные отдельным группам соединений, носят выборочный характер и объединяют иногда непривычно разнородный материал — аминокислоты и пептиды с алкалоидами, углеводы с фенольными продуктами и т. д., используя те или другие линии логической связи разных групп веществ, которые всегда можно найти в органической химии — в первом случае, например, биогенез алкалоидов из аминокислот. Главы эти не могут содержать сколько-нибудь систематического материала, имея более чем скромный размер, однако в них приводятся очень свежий и интересный материал, причем сосредоточивается внимание в большей степени на новом и отбрасывается старое. Так, в разделе об алкалоидах подробно рассмотрено исследование строения хинина и цинхонина и дан исключительно громоздкий синтез резерпина, и, в сущности, этим исчерпывается раздел. В гл. 23 среди прочего материа.да о веществах, родственных сахарал , приводятся структуры стрептомицина, тетрациклина, левомицетина, но бегло и без доказательств. Хотя и эти главы (22—27) читаются с интересом, их роль чисто иллюстративная и весь центр книги сосредоточен на предыдущих главах, после необходимого фундамента (гл. 1—8) посвященных реакциям. Поскольку такое изложение ново, оно интересно отнюдь не только для начинающего изучать органическую химию. Книгу с интересом прочтет и взрослый химик. Этот интерес усугубляется тем, что подбор реакций очень свежий и здесь нашли место многие новые реакции крупного значения. Особенно важно то, что воедино систематически собраны по признаку механизма реакции, которые в обычном изложении оказываются резбросанными по курсу. Механизму реакций уделяется то пристальное внимание, которое характерно для нынешнего этапа развития органической химии. В связи с этим и стереох1Шии течения реакций уделяется большое место. Таким образом, этот раздел книги представляет собой наибольшую ценность независимо от того, действительно ли такое построение с педагогической стороны наиболее целесообразно. Сомнение в этом закрадывается на том основании, что нри таком изложении физиономия химического индивидуума расплывается и [c.5]

    Ионообменная смола, обычно используемая для хроматографического разделения аминокислот, пептидов и несложных родственных им соединений, содержащихся в физиологических жидкостях, представляет собой сополимер стирола и дивинил-бензола в виде шариков. Смола, как правило, характеризуется процентным содержанием дивинилбензола или степенью поперечной сшивки, образующей трехмерную ароматическую сетку необработанного полимера. Для получения катионо- или анионообменной смолы в этот продукт необходимо ввести дополнительные функциональные группы. Для получения сильнокислотного катионита проводят сульфирование избытком серной или хлор-сульфоновой кислоты в присутствии катализатора при этом на каждые десять ароматических колец вводится 8—10 сульфо-групп. Путем хлорметилирования (хлорметиловый эфир) гранул необработанного полимера в присутствии катализатора с последующей обработкой третичным амином (триметиламин) получают сильноосновный анионит, имеющий четвертичные атомы азота. При введении функциональных групп в полимер чрезвычайно важно контролировать побочные реакции. Можно ввести сульфоновые поперечные мостики в сильнокислотный катионит и получить более сильно сшитый продукт. Повышенное сшивание можно наблюдать при синтезе анионитов в том случае, когда хлор хлорметильной группы одного кольца и водород соседнего кольца сближены [87]. Поэтому важно, чтобы процесс полимеризации и введение функциональных групп тщательно контролировались на хроматографическую воспроизводимость. Как указывалось выше, функциональной группой катионообменных смол является —SOsNa (когда используются натрийцит-ратные буферы), а анионообменных смол—группа—М(СНз)зОН . [c.18]

    Промышленный электросинтез, по-видимому, может стать весьма актуальным лет через 20, в начале XXI в., чему будут способствовать следующие факторы переход на водород как носитель энергии вместо нефти и каменного угля, необходимость создания безотходных технологий для предотвращения загрязнения окружающей среды, создание широкой сети атомных электростанций, которые дадут не только необходимую электроэнергию, но и послужат стимулом развития радиационной технологии, во многих отношениях родственной электрохимической технологии. В настоящее время следует идти по пути внедрения методов электросинтеза в тонкую химическую технологию (например, в производство лекарственных препаратов, витаминов и т. д., их полупродуктов, электрохимическое снятие защитных групп в синтезе природных соединений, например пептидов, сахаров и т. д.) и в технологию мономеров и полимеров (в этом отношении интересен, например, разработанный английскими учеными процесс анодного ацетамидирования углеводородов путем использования ионообменных смол — электрохимические реакции волков и овец ), а также создания теоретических основ органической электрохимии и нахождения новых реакций. [c.210]

Таблица 4.4. Константы скоростей распада триплетных состояний фенольныж соединений, тирозина н родственных пептидов в виде при 298 К [121] Таблица 4.4. <a href="/info/412433">Константы скоростей распада</a> <a href="/info/3140">триплетных состояний</a> фенольныж соединений, тирозина н родственных пептидов в виде при 298 К [121]

Смотреть страницы где упоминается термин Пептиды и родственные им соединения: [c.354]    [c.179]    [c.85]    [c.50]    [c.266]    [c.50]    [c.266]    [c.205]    [c.84]    [c.121]    [c.543]    [c.89]    [c.296]    [c.342]    [c.245]    [c.228]    [c.245]    [c.211]    [c.345]   
Смотреть главы в:

Биохимия аминокислот -> Пептиды и родственные им соединения




ПОИСК





Смотрите так же термины и статьи:

Родственные соединения



© 2025 chem21.info Реклама на сайте